Skip to main content
Log in

Co-seismic displacement and waveforms of the 2018 Alaska earthquake from high-rate GPS PPP velocity estimation

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

For earthquake and tsunami early warning and emergency response, the parameters of earthquakes should be determined rapidly and correctly. The precise displacement time series can be obtained from high-rate GPS precise point positioning (PPP) during the earthquake, but require long convergence time. In this paper, the PPP velocity estimation (PPPVE) approach is applied to estimate the velocity waveforms and integrate to displacement waveforms in real-time scenarios. A case study of the 2018 Alaska earthquake is conducted from 1 Hz GPS data. The accuracy of velocity and displacement waveforms for 1 Hz GPS data is analyzed by comparing PPPVE-derived displacements with kinematic PPP solution. The results indicate that PPP and PPPVE are both capable of detecting seismic displacement waveforms with amplitude of 1 cm horizontally, while PPPVE can detect the displacement waveforms with much faster convergence speed. The mean convergence time of PPPVE for north, east and up components are 19, 22 and 31 s, respectively. The derived ground motion parameters estimate a magnitude of Mw = 7.97 ± 0.18, showing a great consistency and agreement with the seismometer magnitude. The preliminary relationship between the seismic intensity and ground motion parameters is established and evaluated for an auxiliary reference. Furthermore, the permanent displacement induced by the earthquake is obtained from real-time PPPVE approach. The benefits of PPPVE approach for GNSS seismology are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bilich A, Cassidy JF, Larson KM (2008) GPS seismology: application to the 2002 M w 7.9 Denali fault earthquake. Bull Seismol Soc Am 98(2):593–606

    Article  Google Scholar 

  • Blewitt G, Kreemer C, Hammond WC, Plag HP, Stein S, Okal E (2006) Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophys Res Lett 33(11):L11309

    Article  Google Scholar 

  • Blewitt G, Hammond WC, Kreemer C, Plag HP, Stein S, Okal E (2009) GPS for real-time earthquake source determination and tsunami warning systems. J Geod 83(3–4):335–343

    Article  Google Scholar 

  • Bock Y, Prawirodirdjo L, Melbourne TI (2004) Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys Res Lett 31(6):L06604

    Article  Google Scholar 

  • Bohm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31:L01603

    Google Scholar 

  • Colosimo G, Crespi M, Mazzoni A (2011) Real-time GPS seismology with a stand-alone receiver: a preliminary feasibility demonstration. J Geophys Res Solid Earth 116(B11):B11302

    Article  Google Scholar 

  • Fratarcangeli F, Savastano G, D’Achille MC, Mazzoni A, Crespi M, Riguzzi F, Devoti R, Pietrantonio G (2018) VADASE reliability and accuracy of real-time displacement estimation: application to the central Italy 2016 earthquakes. Remote Sens 10(8):1201. https://doi.org/10.3390/rs10081201

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher MA, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399

    Article  Google Scholar 

  • Gutenberg B (1945) Amplitudes of surface waves and magnitudes of shallow earthquakes. Bull Seismol Soc Am 35(1):3–12

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res Solid Earth 84(B5):2348–2350

    Article  Google Scholar 

  • Hirahara K (1994) An experiment for GPS strain seismometer. In: Japanese symposium on GPS, pp 67–75

  • Hopfield HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74(18):4487–4499

    Article  Google Scholar 

  • Jin SG, Park PH (2006) Crustal stress and strain energy density rates in South Korea deduced from GPS observations. Terr Atmos Ocean Sci 17(1):169–178

    Article  Google Scholar 

  • Jin SG, Wang J (2008) Spreading change of Africa–South America plate: insights from space geodetic observations. Int J Earth Sci 97(6):1293–1300. https://doi.org/10.1007/s00531-007-0220-0

    Article  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME 82:35–45

    Article  Google Scholar 

  • Keller RJ, Nichols ME, Lange AF (2001) U.S. patent no. 6,199,000. U.S. Patent and Trademark Office, Washington, DC

  • Kouba J (2003) Measuring seismic waves induced by large earthquakes with GPS. Stud Geophys Geodyn 47:741–755

    Article  Google Scholar 

  • Kouba J (2005) A possible detection of the 26 December 2004 great Sumatra–Andaman islands earthquake with solution products of the international GNSS service. Stud Geophys Geodyn 49:463–483

    Article  Google Scholar 

  • Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28

    Article  Google Scholar 

  • Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073

    Article  Google Scholar 

  • Larson KM, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300(5624):1421–1424

    Article  Google Scholar 

  • Lay T, Wallace TC (1995) Modern global seismology, vol 58. Academic Press, Cambridge

    Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Li X, Ge M, Guo B, Wickert J, Schuh H (2013) Temporal point positioning approach for real-time GNSS seismology using a single receiver. Geophys Res Lett 40(21):5677–5682

    Article  Google Scholar 

  • Li X, Zhang X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and Beidou. Sci Rep 5:8328

    Article  Google Scholar 

  • Ohta Y, Kobayashi T, Tsushima H, Miura S, Hino R, Takasu T, Sato T (2012) Quasi real-time fault model estimation for near‐field tsunami forecasting based on RTK‐GPS analysis: application to the 2011 Tohoku‐Oki earthquake (M w 9.0). J Geophys Res Solid Earth 117(B2):B02311

    Article  Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS Conventions (2010), IERS technical note 36. Verlagdes Bundesamtsfür Kartographie und Geodäsie, Frankfurt am Main

  • Remondi BW (1985) Performing centimeter-level surveys in seconds with GPS carrier phase: initial results. Navigation 32(4):386–400

    Article  Google Scholar 

  • Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25(1):1–32

    Google Scholar 

  • Shi C, Lou Y, Zhang H, Zhao Q, Geng J, Wang R, Fang R, Liu J (2010) Seismic deformation of the M w 8.0 Wenchuan earthquake from high-rate GPS observations. Adv Space Res 46:228–235

    Article  Google Scholar 

  • Stein S, Wysession M (2009) An introduction to seismology, earthquakes, and earth structure. Wiley, Hoboken, p 60

    Google Scholar 

  • Su K, Jin S (2018) Improvement of multi-GNSS precise point positioning performances with real meteorological data. J Navig 71(6):1363–1380. https://doi.org/10.1017/S0373463318000462

    Article  Google Scholar 

  • Su K, Jin S, Ge Y (2019a) Rapid displacement determination with a stand-alone multi-GNSS receiver: GPS, Beidou, GLONASS, and Galileo. GPS Solut 23(2):54

    Article  Google Scholar 

  • Su K, Jin S, Hoque MM (2019b) Evaluation of ionospheric delay effects on multi-GNSS positioning performance. Remote Sens 11(2):171. https://doi.org/10.3390/rs11020171

    Article  Google Scholar 

  • Tu R (2013) Fast determination of displacement by PPP velocity estimation. Geophys J Int 196(3):1397–1401

    Article  Google Scholar 

  • Worden CB, Gerstenberger MC, Rhoades DA, Wald DJ (2012) Probabilistic relationships between ground-motion parameters and modified Mercalli intensity in California. Bull Seismol Soc Am 102(1):204–221

    Article  Google Scholar 

  • Wright TJ, Houlié N, Hildyard M, Iwabuchi T (2012) Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: the 2011 Tohoku-Oki (Japan) earthquake. Geophys Res Lett 39(12):L12302

    Article  Google Scholar 

  • Xu P, Shi C, Fang R, Liu J, Niu X, Zhang Q, Yanagidani T (2013) High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. J. Geod 87:361–372

    Article  Google Scholar 

  • Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic geodetic positioning. J Geodesy 75(2–3):109–116

    Article  Google Scholar 

  • Zhang X, Li X, Guo F (2011) Satellite clock estimation at 1 Hz for realtime kinematic PPP applications. GPS Solut 15(4):315–324

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. https://doi.org/10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgements

This works was supported by the Startup Foundation for Introducing Talent of NUIST (Grant No. 2243141801036). We also thank the IGS for providing real-time precise orbit and clock corrections and UNAVCO for providing 1 Hz GPS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuanggen Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Su, K. Co-seismic displacement and waveforms of the 2018 Alaska earthquake from high-rate GPS PPP velocity estimation. J Geod 93, 1559–1569 (2019). https://doi.org/10.1007/s00190-019-01269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01269-3

Keywords

Navigation