Skip to main content
Log in

Thin plate spline interpolation

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The thin plate spline (TPS) is an interpolation approach that has been developed to investigate a frequently occurring problem in geosciences: the modelling of scattered data. In this paper, we carry over the concept of the thin plate spline from the plane to the sphere. To develop the spherical TPS, we utilize the idea of an elastic shell that is attributed with the bending energy and the external energy. The bending energy describes the shape of the membrane, while the external energy reflects deviations between the shell and the data to be modelled. Minimizing both energy terms leads to the variational problem with the solution in the form of the Euler–Lagrange equations. We provide the solution of the variational problem for two cases: (1) total energy minimization over the whole sphere and (2) total energy minimization over a closed region of the sphere. In case (1) we found a closed analytical solution in the form of collocation in a reproducing kernel Hilbert space. The local case (2) solution is based on a discretization of the corresponding Euler–Lagrange equation using the spherical Laplace operator. The performance of the introduced spherical TPS is demonstrated on two real world data sets. It is shown quantitative that the thin plate approach is significantly more effective than Gaussian filter in terms of the GRACE data de-striping. We also show that the TPS can be used effectively for the modelling of the vertical total electron content. It allows the reduction of the computational effort in comparison with well-established planar TPS approximation. Moreover, the harmonicity property of the TPS can be utilized to solve various issues related to Earth gravity modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antoine J-P, Demanet L, Jaques L, Vandergheynst P (2002) Wavelets on the sphere: implementation and approximation. Appl Comput Harmonic Anal 13:177200

    Article  Google Scholar 

  • Balek V, Mizera I (2013) Mechanical models in nonparametric regression. From probability to statistics and back: high-dimensional models and processes—a Festschrift in honor of Jon A. Wellner, 5–19, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2013. https://doi.org/10.1214/12-IMSCOLL902

  • Borkowski A, Keller W (2005) Global and local methods for tracking the intersection curve between two surfaces. J Geod 79:1–10

    Article  Google Scholar 

  • Cunderlik R, Mikula K, Tunega M (2013) Nonlinear diffusion filtering of data on the Earth’s surface. J Geod 87(2013):143–160

    Article  Google Scholar 

  • Cunderlik R, Collar M, Mikula K (2016) Filters for geodesy data based on linear and nonlinear diffusion. GEM Int J Geomath 7(2016):239–274

    Article  Google Scholar 

  • Demanet L, Vandergheyst P (2003) Gabor wavelets on the sphere. In Wavelets: applications in signal and image processing X (proceedings volume). SPIE, 2003. https://doi.org/10.1117/12.506436

  • Duchon J (1976) Interpolation des fonctions de deux varianles suivant le principle de la flexion des plaques minces. R.A.I.R.O. Analyse Numerique 10:5–12

    Article  Google Scholar 

  • Eberly D (2018) Thin-plate spline. Geometric tools, Redmond WA 98052. https://www.geometrictools.com/. Accessed 21 Jan 2019

  • Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. JGR 86:7843–7854

    Article  Google Scholar 

  • Franke R (1982) Scattered data interpolation test of some methods. Math Comput 38:181–200

    Google Scholar 

  • Franke R, Nielson G (1980) Smooth interpolation of large sets of scattered data. Int J Numer Methods Eng 15:1691–1704

    Article  Google Scholar 

  • Freeden W (1981) On spherical spline interpolation and approximation. Math Methods Appl Sci 3:551–575

    Article  Google Scholar 

  • Freeden W (1982) On spline methods in geodetic approximation problems. Math Methods Appl Sci 4:382–396

    Article  Google Scholar 

  • Freeden W (1984) Spherical spline interpolation: basic theory and computational aspects. J Comput Appl Math 11:367–375

    Article  Google Scholar 

  • Freeden W (1990) Spherical spline approximation and its application in physical geodesy. In: Vogel A, Ofoegbu CO, Gorenflo R, Ursin B (eds) Geophysical data inversion methods and applications. Theory and practice of applied geophysics. Vieweg+Teubner Verlag, Wiesbaden

    Google Scholar 

  • Freeden W, Hermann P (1986) Uniform approximation by spherical spline interpolation. Math Z 193:265–275

    Article  Google Scholar 

  • Freeden W, Michel V (1999) Constructive approximation and numerical methods in geodetic research today an attempt at a categorization based on an uncertainty principle. J Geod 73:452–465

    Article  Google Scholar 

  • Freeden W, Schreiner M (2005) Spaceborne gravitational field determination by means of locally supported wavelets. J Geod 79:431–446

    Article  Google Scholar 

  • Freeden W, Glockner O, Schreiner M (1998) Spherical panel clustering and its numerical aspects. J Geod 72:586–599

    Article  Google Scholar 

  • Hoschek J, Lasser D (1992) Grundlagen der geometrischen Datenverarbeitung. B.G. Teubner, Stuttgart

    Book  Google Scholar 

  • Hubbert S, Morton TM (2004) A Duchon framework for the sphere. J Approx Theory 129:28–57

    Article  Google Scholar 

  • Hubbert S, Le Gia QT, Morton TM (2015) Spherical radial basis functions, theory and applications. Springer, Berlin

    Book  Google Scholar 

  • Keller W (1998) Collocation in reproducing kernel Hilbertspaces of a multiscale analysis. Phys Chem Earth 23:25–29

    Article  Google Scholar 

  • Keller W (2004) Wavelets in geodesy and geodynamics. Walter de Gruyter, Berlin, p 279

    Book  Google Scholar 

  • Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008a) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175:417–432. https://doi.org/10.1111/j.1365-246X.2008.03922.x

    Article  Google Scholar 

  • Klees R, Tenzer R, Prutkin I, Wittwer T (2008b) A data-driven approach to local gravity field modelling using spherical radial basis functions. J Geod 82:457–471

    Article  Google Scholar 

  • Krypiak-Gregorczyk A, Wielgosz P (2018) Carrier phase estimation of geometry-free linear combination of GNSS signals for ionospheric TEC modeling. GPS Solut 22:24. https://doi.org/10.1007/s10291-018-0711-4

    Article  Google Scholar 

  • Krypiak-Gregorczyk A, Wielgosz P, Borkowski A (2017) Ionosphere model for european region based on multi-GNSS data and TPS interpolation. Remote Sens 2017(9):1221. https://doi.org/10.3390/rs9121221

    Article  Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, Hoboken, p 509

    Google Scholar 

  • Moritz H (1987) Least-squares collocation. Rev Geophys 16:421–430

    Article  Google Scholar 

  • Sansó F (1990) On the aliasing problem in the spherical harmonic analysis. Bull Géod 64:313–330

    Google Scholar 

  • Schmidt M, Fengler M, Meyer-Gürr T, Eicker A, Kusche J, Sánches L, Shin-Chan H (2007) Regional gravity modeling in terms of spherical base functions. J Geod 81:17–38

    Article  Google Scholar 

  • Sloan IH, Womersley RS (2002) Good approximation on the sphere, with application to geodesy and the scattering of sound. J Comput Appl Math 149:227–237

    Article  Google Scholar 

  • Terzopoulos D (1986) Regularization of inverse visual problems involving discontinuities. IEEE Trans Pattern Anal Mach Intell PAMI–8(4):413–423

    Article  Google Scholar 

  • Tscherning CC (1978) Collocation and least squares methods as a tool for handling gravity field dependent data obtained through space research techniques. Bull Geod 52:199–212

    Article  Google Scholar 

  • Tscherning CC (2001) Computation of spherical harmonic coefficients and their error estimates using least-squares collocation. J Geod 75:12–18

    Article  Google Scholar 

  • Wagner C, McAdoo D, Klokočnik J, Kostelecký J (2006) Degradation of geopotential recovery from short repeat-cycle orbits: application to GRACE monthly fields. J Geod 80:94–103

    Article  Google Scholar 

  • Wahba G (1981) Spline interpolation and smoothing on the sphere. SIAM J Sci Stat Comput 2:5–16

    Article  Google Scholar 

  • Wang H, Sloan IH (2017) On filtered polynomial approximation on the sphere. J Fourier Anal Appl 23:863–876. https://doi.org/10.1007/s00041-016-9493-7

    Article  Google Scholar 

  • Weigelt M, Sideris MG, Sneeuw N (2009) On the influence of the ground track on the gravity field recovery from high-low satellite-to-satellite tracking missions: CHAMP monthly gravity field recovery using the energy balance approach revisited. J Geod 83:1131–1143. https://doi.org/10.1007/s00190-009-0330-5

    Article  Google Scholar 

  • Wielgosz P, Krypiak-Gregorczyk A, Borkowski A (2017) Regional ionosphere modeling based on multi-GNSS data and TPS interpolation. In Proceedings of the baltic geodetic congress (BGC Geomatics), Gdansk, Poland, 22–25 June 2017, pp 287–291

  • Zheng W, Hsu H, Zhong M, Yun M (2012) Efficient accuracy improvement of GRACE global gravitational field recovery using a new inter-satellite range interpolation method. J Geodyn 53:1–7. https://doi.org/10.1016/j.jog.2011.07.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Keller.

Appendix

Appendix

$$\begin{aligned} b_{-2,-2}= & {} 0 \\ b_{-2,-1}= & {} 0\\ b_{-2,0}= & {} \frac{(h_\vartheta \cot (h_\vartheta -\vartheta )+2) (2-h_\vartheta \cot (\vartheta ))}{4 h_\vartheta ^4} \\ b_{-2,1}= & {} 0\\ b_{-2,2}= & {} 0\\&\\ b_{-1,-2}= & {} 0 \\ b_{-1,-1}= & {} \frac{(2-h_\vartheta \cot (\vartheta )) \csc ^2(h_\vartheta -\vartheta )}{2 h_\vartheta ^2 h_\lambda ^2}\\&+\,\frac{(2-h_\vartheta \cot (\theta )) \csc ^2(\vartheta )}{2 h_\vartheta ^2 h_\lambda ^2 } \\ b_{-1,0}= & {} \frac{(2-h_\vartheta \cot (\vartheta )) \left( -\frac{2 \csc ^2(h_\vartheta -\vartheta )}{h_\lambda ^2}-\frac{2}{h_\vartheta ^2}\right) }{2 h_\vartheta ^2}\\&+\,\frac{(2-h_\vartheta \cot (\vartheta )) \left( -\frac{2 \csc ^2(\vartheta )}{h_\lambda ^2 }-\frac{2}{h_\vartheta ^2}\right) }{2 h_\vartheta ^2} \\ b_{-1,1}= & {} \frac{(2-h_\vartheta \cot (\vartheta )) \csc ^2(h_\vartheta -\vartheta )}{2 h_\vartheta ^2 h_\lambda ^2}\\&+\,\frac{(2-h_\vartheta \cot (\vartheta )) \csc ^2(\vartheta )}{2 h_\vartheta ^2 h_\lambda ^2 } \\ b_{-1,2}= & {} 0\\&\\ b_{0,-2}= & {} \frac{\csc ^4(\vartheta )}{h_\lambda ^4 } \\ b_{0,-1}= & {} \frac{2 \csc ^2(\vartheta ) \left( -\frac{2 \csc ^2(\vartheta )}{h_\lambda ^2}-\frac{2}{h_\vartheta ^2}\right) }{h_\lambda ^2 }\\ b_{0,0}= & {} \frac{2 \csc ^4(\vartheta )}{h_\lambda ^4 }+\left( -\frac{2 \csc ^2(\vartheta )}{h_\lambda ^2 }-\frac{2}{h_\vartheta ^2}\right) ^2\\&+\,\frac{(2-h_\vartheta \cot (h_\vartheta -\vartheta )) (2-h_\vartheta \cot (\vartheta ))}{4 h_\vartheta ^4}\\&+\,\frac{(h_\vartheta \cot (\vartheta )+2) (2-h_\vartheta \cot (h_\vartheta +\vartheta ))}{4 h_\vartheta ^4} \\ b_{0,1}= & {} \frac{2 \csc ^2(\vartheta ) \left( -\frac{2 \csc ^2(\vartheta )}{h_\lambda ^2}-\frac{2}{h_\vartheta ^2}\right) }{h_\lambda ^2 }\\ b_{0,2}= & {} \frac{\csc ^4(\vartheta )}{h_\lambda ^4 }\\&\\ b_{1,-2}= & {} 0 \\ b_{1,-1}= & {} \frac{(h_\vartheta \cot (\vartheta )+2) \csc ^2(\vartheta )}{2 h_\vartheta ^2 h_\lambda ^2}\\&+\,\frac{(h_\vartheta \cot (\vartheta )+2) \csc ^2(h_\vartheta +\vartheta )}{2 h_\vartheta ^2 h_\lambda ^2 } \\ b_{1,0}= & {} \frac{(h_\vartheta \cot (\vartheta )+2) \left( -\frac{2 \csc ^2(\vartheta )}{h_\lambda ^2}-\frac{2}{h_\vartheta ^2}\right) }{2 h_\vartheta ^2}\\&+\,\frac{(h_\vartheta \cot (\vartheta )+2) \left( -\frac{2 \csc ^2(h_\vartheta +\vartheta )}{h_\lambda ^2 }-\frac{2}{h_\vartheta ^2}\right) }{2 h_\vartheta ^2}\\ b_{1,1}= & {} \frac{(h_\vartheta \cot (\vartheta )+2) \csc ^2(\vartheta )}{2 h_\vartheta ^2 h_\lambda ^2}\\&+\,\frac{(h_\vartheta \cot (\vartheta )+2) \csc ^2(h_\vartheta +\vartheta )}{2 h_\vartheta ^2 h_\lambda ^2 }\\ b_{1,2}= & {} 0 \\&\\ b_{2,-2}= & {} 0 \\ b_{2,-1}= & {} 0 \\ b_{2,0}= & {} \frac{(h_\vartheta \cot (\vartheta )+2) (h_\vartheta \cot (h_\vartheta +\vartheta )+2)}{4 h_\vartheta ^4}\\ b_{2,1}= & {} 0 \\ b_{2,2}= & {} 0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, W., Borkowski, A. Thin plate spline interpolation. J Geod 93, 1251–1269 (2019). https://doi.org/10.1007/s00190-019-01240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01240-2

Keywords

Navigation