Skip to main content
Log in

Anisotropy of atmospheric delay in InSAR and its effect on InSAR atmospheric correction

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Reconstruction of interferometric synthetic aperture radar (InSAR) atmospheric delay maps is important for the correction of tropospheric artifacts in differential InSAR (D-InSAR) and for the improvement in persistent scatterer (PS) target identification in PS-InSAR. In this study, we explored the spatial structure of atmospheric delay datasets and assessed its effect on InSAR atmospheric delay correction. Two-dimensional (2D) experimental variogram maps of turbulent mixing components derived from 12 GPS zenith wet delay (ZWD) datasets, 12 MERIS ZWD datasets, and 3 ERS-1/2 tandem interferograms showed that spatial anisotropy is common in these datasets. An anisotropic variogram model was then developed and applied to fit the experimental variograms. The results showed that the proposed 2D anisotropic variogram model is superior to the isotropic model, with average improvements in 31.92 and 33.57% in terms of root-mean-square error and correlation coefficients, respectively. With the proposed anisotropic variogram model, the atmospheric delay maps were reconstructed by kriging interpolation and used to correct the atmospheric artifacts in InSAR interferograms. The results showed that the model considering the anisotropy of atmospheric delay produces better results than that with the isotropy assumption. Finally, the effects of the anisotropy ratio, sampling density, and correlation distance of external water vapor data on the atmospheric delay correction were investigated. The results showed that when the anisotropy ratio is less than 0.3, or the sampling density is less than 1% or more than 60%, the impact of anisotropy on kriging prediction is not obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Amelung F, Yun SH et al (2007) Stress control of deep rift intrusion at Mauna Loa Volcano, Hawaii. Science 316(5728):1026–1030

    Article  Google Scholar 

  • Bekaert D, Hooper A, Wright TJ et al (2015) A spatially variable power law tropospheric correction technique for InSAR data. J Geophys Res 120(2):1345–1356

    Article  Google Scholar 

  • Bercovici H, Constantin P, Foias C, Manley OP (1995) Exponential decay of the power spectrum of turbulence. J Stat Phys 80(3–4):579–602

    Article  Google Scholar 

  • Bevis M, Businger S et al (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33(3):379–386

    Article  Google Scholar 

  • Chorti A, Hristopulos DT (2008) Nonparametric identification of anisotropic (elliptic) correlations in spatially distributed data sets. IEEE Trans Signal Process 56(10):4738–4751

    Article  Google Scholar 

  • Delacourt C, Briole P et al (1998) Tropospheric corrections of SAR interferograms with strong topography. Application to Etna. Geophys Res Lett 25(15):2849–2852

    Article  Google Scholar 

  • Ding XL, Li ZW et al (2008) Atmospheric effects on InSAR measurements and their mitigation. Sensors 8:5426–5448

    Article  Google Scholar 

  • Elgered G (1993) Tropospheric radio-path delay from groundbased microwave radiometry. Atmos Remote Sens Microw Radiom 1:215

    Google Scholar 

  • Elosegui P, Ruis A, Davis JL et al (1998) An experiment for estimation of the spatial and temporal variations of water vapor using GPS data. Phys Chem Earth 23:125–130

    Article  Google Scholar 

  • Emardson TR, Derks HJP (2000) On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere. Meteorol Appl 7(1):61–68

    Article  Google Scholar 

  • Emardson TR, Johansson JM (1998) Spatial interpolation of the atmospheric water vapor content between sites in a ground-based GPS Network. Geophys Res Lett 25(25):3347–3350

    Article  Google Scholar 

  • Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Eos. Trans Am Geophys Un 81(48):583–585

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • George WK, Wang H (2009) The exponential decay of homogeneous turbulence. Phys Fluids 21(2):105108–49

    Article  Google Scholar 

  • Goldstein RM (1995) Atmospheric limitations to repeat-track radar interferometry. Geophys Res Lett 22(18):2517–2520

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford

    Google Scholar 

  • Hanssen RF (1998) Atmospheric heterogeneities in ERS tandem SAR interferometry. Delft University Press, Delft

    Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Janssen V, Ge LL, Rizos C (2004) Tropospheric correction to SAR interferometry from GPS observations. GPS Solut 8(3):140–151

    Article  Google Scholar 

  • Jonsson S (2002) Modeling volcano and earthquake deformation from satellite radar interferometric observations. Ph.D. dissertation, Stanford University

  • Knospe S, Jonsson S (2010) Covariance estimation for DInSAR surface deformation measurements in the presence of anisotropic atmospheric noise. IEEE Trans Geosci Remote Sens 48(4):2057–2065

    Article  Google Scholar 

  • Li Z (2005a) Correction of atmospheric water vapour effects on repeatpass SAR interferometry using GPS, MODIS and MERIS data. Dissertation, University College London

  • Li ZW (2005b) Modeling atmospheric effects on repeat-pass InSARmeasurements. Dissertation, The Hong Kong Polytechnic University

  • Li ZW, Ding XL, Liu GX (2004) Modeling atmospheric effects onb InSAR with meteorological and continuous GPS observations: algorithms and some test results. J Atmos Solar Terr Phys 66:907–917

    Article  Google Scholar 

  • Li Z, Muller JP, Cross P et al (2005) Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. J Geophys Res 110:B03410. https://doi.org/10.1029/2004JB003446

    Article  Google Scholar 

  • Li Z, Fielding EJ, Cross P et al (2006a) Interferometric synthetic aperture radar atmospheric correction: medium resolution imaging spectrometer and advanced synthetic aperture radar integration. Geophys Res Lett 33(6):272–288

    Article  Google Scholar 

  • Li Z, Muller JP, Cross P et al (2006b) Assessment of the potential of MERIS near-infrared water vapour products to correct ASAR interferometric measurements. Int J Remote Sens 27(2):349–365

    Article  Google Scholar 

  • Li ZW, Ding XL, Huang C et al (2007) Atmospheric effects on repeatpass InSAR measurements over Shanghai region. J Atmos Solar Terr Phys 69(12):1344–1356

    Article  Google Scholar 

  • Li ZW, Ding XL et al (2008) Improved filtering parameter determination for the Goldstein radar interferogram filter. ISPRS J Photogramm Remote Sens 63(6):621–634

    Article  Google Scholar 

  • Li Z, Fielding EJ et al (2009) Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int J Remote Sens 30(13):3343–3363

    Article  Google Scholar 

  • Li ZW, Xu WB et al (2012) Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model. Geophys J Int 189(2):898–910

    Article  Google Scholar 

  • Lohman RB, Barnhart WD (2010) Evaluation of earthquake triggering during the 2005–2008 earthquake sequence on Qeshm Island, Iran. J Geophys Res Atmos 115(B12):1–70

    Article  Google Scholar 

  • Massonnet D, Feigl K, Rossi M et al (1994) Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature 369(6477):227–230

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  Google Scholar 

  • Onn F, Zebker HA (2006) Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. J Geophys Res 111(B9):535–540

    Article  Google Scholar 

  • Refice A, Belmonte A, Bovenga F et al (2010) On the use of anisotropic covariance models in estimating atmospheric DInSAR contributions. IEEE Geosci Remote Sens Lett 8(2):341–345

    Article  Google Scholar 

  • Scharroo R, Mvisser P (1998) Precise orbit determination and gravity field improvement for the ERS satellites. J Geophys Res 103(C4):8113–8127

    Article  Google Scholar 

  • Schueler T, Pósfay A, Hein GW et al (2001) A global analysis of the mean atmospheric temperature for GPS water vapor estimation. In: Proceedings of ION-GPS, pp 11–14

  • Stein M (1988) Asymptotically efficient spatial interpolation with a misspecified covariance function. Ann Stat 16:55–63

    Article  Google Scholar 

  • Stein M (2002) The screening effect in Kriging. Ann Stat 30(1):298–323

    Article  Google Scholar 

  • Stull RB (1995) Meteorology today for scientists and engineers. West Publishing Company, Minneapolis

    Google Scholar 

  • Sun Y, Bowman KP, Genton MG et al (2015) A Matérn model of the spatial covariance structure of point rain rates. Stoch Environ Res Risk Assess 29(2):411–416

    Article  Google Scholar 

  • Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bull Géodésique 64(2):127–159

    Article  Google Scholar 

  • Treuhaft RN, Lanyi GE (1987) The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci 22(2):251–265

    Article  Google Scholar 

  • Williams S, Bock Y, Fang P (1998) Integrated satellite interferometry: tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. J Geophys Res 103(B11):27051–27067

    Article  Google Scholar 

  • Wright TJ, Parsons B et al (2004) InSAR observation of low slip rates on the major faults of western Tibet. Science 305(5681):236–239

    Article  Google Scholar 

  • Xu WB et al (2010) Correcting atmospheric effects in ASAR interferogram with MERIS integrated water vapor data. Chin J Geophys 53(5):1073–1084

    Google Scholar 

  • Xu WB, Li ZW, Ding XL, Zhu JJ (2011) Interpolating atmospheric water vapor delay by incorporating terrain elevation information. J Geod 85(9):555–564

    Article  Google Scholar 

  • Zebker HA, Rosen PA, Hensley S (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res 102(B4):7547–7563

    Article  Google Scholar 

Download references

Acknowledgements

The hourly GPS total zenith delays at each SCIGN site and the daily three-dimensional position data series were provided by the Scripps Orbit and Permanent Array Center (http://sopac.ucsd.edu). This research was supported by the National Natural Science Foundation of China (Nos.: 41474007, 41404013 and 41222027) and the Hunan Provincial Natural Science Foundation of China (No. 13JJ1006),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Li, Z., Hu, J. et al. Anisotropy of atmospheric delay in InSAR and its effect on InSAR atmospheric correction. J Geod 93, 241–265 (2019). https://doi.org/10.1007/s00190-018-1155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1155-x

Keywords

Navigation