Skip to main content
Log in

Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The Co-Seismic Ionospheric Disturbance of the 2015 Nepal earthquake is analyzed in this paper. GNSS data are used to obtain the Satellite-Station TEC sequences. After removing the de-trended TEC variation, a clear ionospheric disturbance was observed 10 min after the earthquake, while the geomagnetic conditions, solar activity, and weather condition remained calm according to the Kp, Dst, F10.7 indices and meteorological records during the period of interest. Computerized ionosphere tomography (CIT) is then used to present the tridimensional ionosphere variation with a 10-min time resolution. The CIT results indicate that (1) the disturbance of the ionospheric electron density above the epicenter during the 2015 Nepal earthquake is confined at a relatively low altitude (approximately 150–300 km); (2) the ionospheric disturbances on the west side and east sides of the epicenter are precisely opposite. A newly established electric field penetration model of the lithosphere–atmosphere–ionosphere coupling is used to investigate the potential physical mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afraimovich EL et al (2010) TEC response to the 2008 Wenchuan earthquake in comparison with other strong earthquakes. Int J Remote Sens 31(13):3601–3613

    Article  Google Scholar 

  • Astafyeva E, Shalimov S, Olshanskaya E, Lognonné P (2013) Ionospheric response to earthquakes of different magnitudes: larger quakes perturb the ionosphere stronger and longer. Geophys Res Lett 40:1675–1681. https://doi.org/10.1002/grl.50398

    Article  Google Scholar 

  • Avinash CK, Malcolm S (1988) Principles of computerized tomographic imaging. IEEE Press, New York, pp 275–296

  • Bolt BA (1964) Seismic air waves from the great 1964 Alaskan earthquake. Nature 202(4937):1095–1096

    Article  Google Scholar 

  • Calais E, Minster JB (1995) GPS detection of ionospheric perturbations following the January 17 1994 Northridge earthquake. Geophys Res Lett 22(9):1045–1048

    Article  Google Scholar 

  • Cervone G et al (2006) Surface latent heat flux and nighttime LF anomalies prior to the \(\text{ Mw }=8.3\) Tokachi-Oki earthquake. Nat Hazards Earth Syst Sci 6:109–114

    Article  Google Scholar 

  • Chen P, Yao YB, Yao W (2016) On the coseismic ionospheric disturbances after the Nepal Mw7.8 earthquake on April 25, 2015 using GNSS observations. Adv Space Res 59(1):103–113

    Article  Google Scholar 

  • Davies K, Baker DM (1965) Ionospheric effect observed around the time of the Alaskan earthquake of March 28 1964. J Geophys Res 70(9):2251–2253

    Article  Google Scholar 

  • Freund FT, Kulahci IG, Cyr G, Ling J, Winnick M, Tregloan-Reed J, Freund MM (2009) Air ionization at rock surfaces and pre-earthquake signals. J Atmos Sol Terr Phys 71:1824–1834. https://doi.org/10.1016/j.jastp.2009.07.013

    Article  Google Scholar 

  • Hansen AJ (1998) Real-time ionospheric tomography using terrestrial GPS sensors. Proc Inst Navig GPS 98:717–727

    Google Scholar 

  • Heki K (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys Res Lett 38(17):L17312

    Article  Google Scholar 

  • Huba JD, Joyce G, Fedder JA (2000) Sami2 is Another Model of the Ionosphere (SAMI2): a new low-latitude ionosphere model. J Geophys Res 105(A10):23035–23053. https://doi.org/10.1029/2000JA000035

    Article  Google Scholar 

  • Jin SG, Occhipinti G, Jin R (2015) GNSS ionospheric seismology: recent observation evidences and characteristics. Earth Sci Rev 147:54–64

    Article  Google Scholar 

  • Kamogawa M (2006) Preseismic lithospherec–atmospherec–ionosphere coupling. EOSTrans Am Geophys Union 87(40):417–424

    Article  Google Scholar 

  • Kamogawa M et al (2015) Does an ionospheric hole appear after an inland earthquake? J Geophys Res Space Phys 120(11):9998–10005

    Article  Google Scholar 

  • Kon S, Nishihashi M, Hattori K (2011) Ionospheric anomalies possibly associated with \(\text{ M }\geqslant 6.0\) earthquakes in the Japan area during 1998–2010: case studies and statistical study. J Asian Earth Sci 41(4–5):410–420

    Article  Google Scholar 

  • Kong J et al (2016) A new computerized ionosphere tomography model using the mapping function and an application in study of seismic-ionosphere disturbance. J Geod 90(8):741–755

    Article  Google Scholar 

  • Kuo CL, Lee LC, Huba J (2014) An improved coupling model for the lithosphere–atmosphere–ionosphere system. J Geophys Res Space Phys 119:3189–3205

    Article  Google Scholar 

  • Kuo CL, Lee LC, Heki K (2015) Preseismic TEC changes for Tohoku-Oki earthquake: comparisons between simulations and observations. Terr Atmos Ocean Sci 26(1):63–72

    Article  Google Scholar 

  • Le HJ, Liu JY, Liu LB (2011) A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002–2010. J Geophys Res 116:A02303

    Google Scholar 

  • Leonard RS, Barnes RA (1965) Observation of ionospheric disturbances following the Alaska earthquake. J Geophys Res 70(5):1250–1253

    Article  Google Scholar 

  • Liu JY et al (2006) A statistical investigation of pre-earthquake ionospheric anomaly. J Geophys Res 111(A5):304–309

    Google Scholar 

  • Liu JY et al (2010) Coseismic ionospheric disturbances triggered by the Chic-Chi earthquake. J Geophys Res 115:A08303

    Google Scholar 

  • Maruyama T et al (2011) Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:869–873

    Article  Google Scholar 

  • Occhipinti G, Komjathy A, Lognonné P (2008) Tsunami detection by GPS: how ionospheric observation might improve the Global Warning System. GPS World 19(2):50–56

    Google Scholar 

  • Oyama KI et al (2008) Reduction of electron temperature in low latitude ionosphere at 600 km before and after large earthquakes. J Geophys Res 113:A11317

    Article  Google Scholar 

  • Perevalova NP et al (2014) Threshold magnitude for ionospheric TEC response to earthquakes. J Atmos Sol Terr Phys 108:77–90

    Article  Google Scholar 

  • Pryse SE, Kersley L (1992) A preliminary experimental test of ionospheric tomography. J Atmos Terr Phys 54(7–8):1007–1012

    Article  Google Scholar 

  • Pulinets S, Boyarchuk K (2004) Ionospheric precursors of earthquakes. Springer, Berlin

    Google Scholar 

  • Pulinets S, Davidenko D (2014) Ionospheric precursors of earthquakes and Global Electric Circuit. Adv Space Res 53(5):709–723

    Article  Google Scholar 

  • Pulinets SA, Boyarchuk KA, Hegai VV, Kim VP, Lomonosov AM (2000) Quasielectrostatic model of atmosphere–thermosphere–ionosphere coupling. Adv Space Res 26(8):1209–1218. https://doi.org/10.1016/S0273-1177(99)01223-5

    Article  Google Scholar 

  • Reddy CD, Seemala GK (2015) Two-mode ionospheric response and Rayleigh wave group velocity distribution reckoned from GPS measurement following Mw 7.8 Nepal earthquake on 25 April 2015. J Geophys Res Space Phys 120:7049–7059

    Article  Google Scholar 

  • Ryu K, Lee E, Parrot M, Oyama K-I (2014a) Multisatellite observations of enhancement of equatorial ionization anomaly around Northern Sumatra earthquake of March 2005. J Geophys Res 119:4767–4785

    Article  Google Scholar 

  • Saroso S et al (2008) Ionospheric GPS TEC anomalies and \(\text{ M } >5.9\) earthquakes in Indonesia during 1993–2002. Terr Atmos Ocean Sci 19(5):481–488

    Article  Google Scholar 

  • Schmidt M, Bilitza D, Shum CK, Zeilhofer C (2008) Regional 4-D modeling of the ionospheric electron density. Adv Space Res 42(4):782–790

    Article  Google Scholar 

  • Sorokin VM, Chmyrev VM, Yaschenko AK (2001) Electrodynamic model of the lower atmosphere and the ionosphere coupling. J Atmos Sol Terr Phys 63(16):1681–1691. https://doi.org/10.1016/S1364-6826(01)00047-5

    Article  Google Scholar 

  • Sorokin VM, Yaschenko AK, Hayakawa M (2007) A perturbation of DC electric field caused by light ion adhesion to aerosols during the growth in seismic-related atmospheric radioactivity. Nat Hazards Earth Syst Sci 7(1):155–163

    Article  Google Scholar 

  • Sun YY et al (2016) Ionospheric F2 region perturbed by the 25 April 2015 Nepal earthquake. J Geophys Res Space Phys 121:5778–5784

    Article  Google Scholar 

  • Yao YB et al (2012) Analysis of pre-earthquake ionospheric anomalies before the global \(\text{ M } = 7.0+\) earthquakes in 2010. Nat Hazards Earth Syst Sci 112(3):575–585

    Article  Google Scholar 

  • Yuen FC et al (1969) Continuous traveling coupling between seismic waves and the ionosphere evident in May 1968 Japan earthquake data. J Geophys Res 74:2256–2264

    Article  Google Scholar 

  • Zhou C et al (2017) An electric field penetration model for seismo-ionospheric research. Adv Space Res 60(10):2217–2232. https://doi.org/10.1016/j.asr.2017.08.007

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the CMONOC for providing the GPS data via the GNSS Center at Wuhan University, the UNAVCO for providing the Nepal network data, the IGS for providing the orbit data, and the National Science & Technology Infrastructure of China, National Earth System Science Data Sharing Infrastructure (http://www.geodata.cn), for providing the base maps in this paper. We also thank NASA for providing magnetic index data and the ACE Science Center for providing F10.7 data. This research was financially supported by the National Natural Fund of China (41274022, 41604002, and 41574028), the Fundamental Research Funds for the Central Universities (2042016kf0037), and Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping Fund (16-02-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, J., Yao, Y., Zhou, C. et al. Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake. J Geod 92, 1255–1266 (2018). https://doi.org/10.1007/s00190-018-1117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1117-3

Keywords

Navigation