Skip to main content

Advertisement

Log in

Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite–receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73–96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Artru J, Ducic V, Kanamori H, Lognonné P, Murakami M (2005) Ionospheric detection of gravity waves induced by tsunamis. Geophys J Int 160:840–848

    Article  Google Scholar 

  • Banville S, Collins P, Zhang W, Langley RB (2014) Global and regional ionospheric corrections for faster PPP convergence. Navigation 61:115–124

    Article  Google Scholar 

  • Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geodesy 84:293–304

    Article  Google Scholar 

  • Brunini C, Azpilicueta FJ (2009) Accuracy assessment of the GPS-based slant total electron content. J Geodesy 83:773–785

    Article  Google Scholar 

  • Brunini C, Camilion E, Azpilicueta F (2011) Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model. J Geodesy 85:637–645

    Article  Google Scholar 

  • Brunini C, Meza A, Gende M, Azpilicueta F (2008) South American regional ionospheric maps computed by GESA: a pilot service in the framework of SIRGAS. Adv Space Res 42:737–744

    Article  Google Scholar 

  • Choi K, Bilich A, Larson KM, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett 31:L22608. doi:10.1029/2004GL021621

  • Choi KH, Lee JY, Kim HS, Kim J, Lee HK (2012) Simultaneous estimation of ionospheric delays and receiver differential code bias by a single GPS station. Meas Sci Technol 23:065002

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geodesy 81:111–120

    Article  Google Scholar 

  • Cohen CE, Penm B, Parkinson BW (1992) Estimation of absolute ionospheric delay exclusively through single-frequency GPS measurements. In: Proceedings of the 5th international technical meeting of the satellite division of the institute of navigation (ION GPS 1992), pp 325–330

  • Dautermann T, Calais E, Haase J, Garrison J (2007) Investigation of ionospheric electron content variations before earthquakes in southern California, 2003–2004. J Geophy Res Solid Earth 112:B02106. doi:10.1029/2006JB004447

    Article  Google Scholar 

  • Dettmering D, Limberger M, Schmidt M (2014) Using DORIS measurements for modeling the vertical total electron content of the Earth’s ionosphere. J Geodesy 88:1131–1143

    Article  Google Scholar 

  • Dyrud L, Jovancevic A, Brown A, Wilson D, Ganguly S (2008) Ionospheric measurement with GPS: receiver techniques and methods. Radio Sci 43:RS6002. doi:10.1029/2007RS003770

  • Feltens J (2003) The international GPS service (IGS) ionosphere working group. Adv Space Res 31:635–644

    Article  Google Scholar 

  • Gulyaeva TL, Arikan F, Hernandez-Pajares M, Veselovsky I (2014) North–south components of the annual asymmetry in the ionosphere. Radio Sci 49:485–496

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61:1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geodesy 83:263–275

    Article  Google Scholar 

  • Komjathy A et al (2012) Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: the Tohoku case study. Earth Planets Space 64:1287–1294

    Article  Google Scholar 

  • Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40:RS6006. doi:10.1029/2005RS003279

  • Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5:12–28

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying. Wiley, New York

    Book  Google Scholar 

  • Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geodesy 89:331–345

    Article  Google Scholar 

  • Liu Z, Gao Y (2004) Ionospheric TEC predictions over a local area GPS reference network. GPS Solut 8:23–29

    Article  Google Scholar 

  • Lognonné P et al (2006) Ground-based GPS imaging of ionospheric post-seismic signal. Planet Space Sci 54:528–540

    Article  Google Scholar 

  • Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33:565–582

    Article  Google Scholar 

  • Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network. In: Proceedings of ION GPS-93, the 6th international technical meeting of the satellite division of The Institute of Navigation, Salt Lake City, UT, 22–24 September 1993, pp 1323–1332

  • Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 61:191–201

    Article  Google Scholar 

  • Park J, von Frese RR, Grejner-Brzezinska DA, Morton Y, Gaya-Pique LR (2011) Ionospheric detection of the 25 May 2009 North Korean underground nuclear test. Geophys Res Lett 38:L22802. doi:10.1029/2011GL049430

    Article  Google Scholar 

  • Sardon E, Rius A, Zarraoa N (1994a) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci 29:577–586

    Article  Google Scholar 

  • Sardon E, Rius A, Zarraoa N (1994b) Ionospheric calibration of single frequency VLBI and GPS observations using dual GPS data. J Geodesy 68:230–235

    Google Scholar 

  • Schüler T, Oladipo OA (2013) Single-frequency GNSS retrieval of vertical total electron content (VTEC) with GPS L1 and Galileo E5 measurements. J Space Weather Space Clim 3:A11

    Article  Google Scholar 

  • Schüler T, Oladipo OA (2014) Single-frequency single-site VTEC retrieval using the NeQuick2 ray tracer for obliquity factor determination. GPS Solut 18:115–122

    Article  Google Scholar 

  • Sezen U, Arikan F, Arikan O, Ugurlu O, Sadeghimorad A (2013) Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather 11:297–305

    Article  Google Scholar 

  • Stephens P, Komjathy A, Wilson B, Mannucci A (2011) New leveling and bias estimation algorithms for processing COSMIC/FORMOSAT-3 data for slant total electron content measurements. Radio Sci 46:RS0D10. doi:10.1029/2010RS004588

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016) Determination of differential code biases with multi-GNSS observations. J Geodesy 90:209–228

    Article  Google Scholar 

  • Xia R (1992) Determination of absolute ionospheric error using a single frequency GPS receiver. In: Proceedings of the 5th international technical meeting of the satellite division of the institute of navigation (ION GPS 1992), pp 483–490

  • Yao Y, Chen P, Zhang S, Chen J (2013) A new ionospheric tomography model combining pixel-based and function-based models. Adv Space Res 52:614–621

    Article  Google Scholar 

  • Zumberge J, Heflin M, Jefferson D, Watkins M, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102:5005–5017

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National key Research Program of China “Collaborative Precision Positioning Project” (No. 2016YFB0501900), the National Natural Science Foundation of China (Nos. 41604031, 41774042) and Natural Science Foundation of Jiangxi Province (No. 20161BAB213087). The first author is supported by the CAS Pioneer Hundred Talents Program. All this support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baocheng Zhang or Peter J. G. Teunissen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Teunissen, P.J.G., Yuan, Y. et al. Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers. J Geod 92, 401–413 (2018). https://doi.org/10.1007/s00190-017-1071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1071-5

Keywords

Navigation