Skip to main content

Advertisement

Log in

On the short-term temporal variations of GNSS receiver differential phase biases

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

As a first step towards studying the ionosphere with the global navigation satellite system (GNSS), leveling the phase to the code geometry-free observations on an arc-by-arc basis yields the ionospheric observables, interpreted as a combination of slant total electron content along with satellite and receiver differential code biases (DCB). The leveling errors in the ionospheric observables may arise during this procedure, which, according to previous studies by other researchers, are due to the combined effects of the code multipath and the intra-day variability in the receiver DCB. In this paper we further identify the short-term temporal variations of receiver differential phase biases (DPB) as another possible cause of leveling errors. Our investigation starts by the development of a method to epoch-wise estimate between-receiver DPB (BR-DPB) employing (inter-receiver) single-differenced, phase-only GNSS observations collected from a pair of receivers creating a zero or short baseline. The key issue for this method is to get rid of the possible discontinuities in the epoch-wise BR-DPB estimates, occurring when satellite assigned as pivot changes. Our numerical tests, carried out using Global Positioning System (GPS, US GNSS) and BeiDou Navigation Satellite System (BDS, Chinese GNSS) observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, suggest two major findings. First, epoch-wise BR-DPB estimates can exhibit remarkable variability over a rather short period of time (e.g. 6 cm over 3 h), thus significant from a statistical point of view. Second, a dominant factor driving this variability is the changes of ambient temperature, instead of the un-modelled phase multipath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azpilicueta F, Brunini C, Radicella S (2006) Global ionospheric maps from GPS observations using modip latitude. Adv Space Res 38:2324–2331

    Article  Google Scholar 

  • Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84:293–304

    Article  Google Scholar 

  • Brunini C, Azpilicueta F (2009) Accuracy assessment of the GPS-based slant total electron content. J Geod 83:773–785

    Article  Google Scholar 

  • Bruyninx C, Defraigne P, Sleewaegen J-M (1999) Time and frequency transfer using GPS codes and carrier phases: onsite experiments. GPS Solut 3(2):1–10

    Article  Google Scholar 

  • Chen C, Saito A, Lin C, Yamamoto M, Suzuki S, Seemala G (2016) Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography. Earth Planets Space 68:32. doi:10.1186/s40623-016-0412-6

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81:111–120

    Article  Google Scholar 

  • Coster A, Williams J, Weatherwax A, Rideout W, Herne D (2013) Accuracy of GPS total electron content: GPS receiver bias temperature dependence. Radio Sci 48:190–196

    Article  Google Scholar 

  • Debao W, Xiao Z, Yangjin T, Guangsheng Z, Min Z, Rusong L (2015) GPS-based ionospheric tomography with a constrained adaptive simultaneous algebraic reconstruction technique. J Earth Syst Sci 124:283–289

    Article  Google Scholar 

  • Dettmering D, Schmidt M, Heinkelmann R, Seitz M (2011) Combination of different space-geodetic observations for regional ionosphere modeling. J Geod 85:989–998

    Article  Google Scholar 

  • Dyrud L, Jovancevic A, Brown A, Wilson D, Ganguly S (2008) Ionospheric measurement with GPS: receiver techniques and methods. Radio Sci 43(6):RS6002. doi:10.1029/2007RS003770

    Article  Google Scholar 

  • Georgiadou Y, Kleusberg A (1988) On carrier signal multipath effects in relative GPS positioning. Manus Geod 13:172–179

    Google Scholar 

  • Hartinger H, Brunner F (1999) Variances of GPS phase observations: the SIGMA-\(\varepsilon \) model. GPS Solut 2:35–43

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61:1237–1247

    Article  Google Scholar 

  • Jin S, Jin R, Li D (2016) Assessment of BeiDou differential code bias variations from multi-GNSS network observations. Ann Geophys 34(2):259–269

    Article  Google Scholar 

  • Kao S, Tu Y, Chen W, Weng D, Ji S (2013) Factors affecting the estimation of GPS receiver instrumental biases. Surv Rev 45:59–67

    Article  Google Scholar 

  • Komjathy A, Galvan DA, Stephens P, Butala MD, Akopian V, Wilson B, Verkhoglyadova O, Mannucci AJ, Hickey M (2012) Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: the Tohoku case study. Earth Planets Space 64:1287–1294

    Article  Google Scholar 

  • Li H, Zhou X, Wu B (2013) Fast estimation and analysis of the inter-frequency clock bias for Block IIF satellites. GPS Solut 17:347–355

    Article  Google Scholar 

  • Li M, Yuan Y, Wang N, Li Z, Li Y, Huo X (2016) Estimation and analysis of Galileo differential code biases. J Geod. doi:10.1007/s00190-016-0962-1

    Google Scholar 

  • Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86:1059–1076

    Article  Google Scholar 

  • Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geod 89:331–345

    Article  Google Scholar 

  • Liu L, Wan W (2016) New understanding achieved from 2 years of Chinese ionospheric investigations. Sci Bull 61:524–542

    Article  Google Scholar 

  • Liu Z, Gao Y (2004) Ionospheric TEC predictions over a local area GPS reference network. GPS Solut 8:23–29

    Article  Google Scholar 

  • Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33:565–582

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17:211–222

    Article  Google Scholar 

  • Montenbruck O, Hugentobler U, Dach R, Steigenberger P, Hauschild A (2012) Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solut 16:303–313

    Article  Google Scholar 

  • Nadarajah N, Teunissen PJ, Raziq N (2013) BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination. Sensors 13:9435–9463

    Article  Google Scholar 

  • Ping J et al (2002) Regional ionosphere map over Japanese Islands. Earth Planets Space 54:e13–e16

    Article  Google Scholar 

  • Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci 29:577–586

    Article  Google Scholar 

  • Shi C et al (2012) Precise orbit determination of BeiDou Satellites with precise positioning. Sci China Earth Sci 55:1079–1086

    Article  Google Scholar 

  • Stephens P, Komjathy A, Wilson B, Mannucci A (2011) New leveling and bias estimation algorithms for processing COSMIC/FORMOSAT-3 data for slant total electron content measurements. Radio Sci 46(6):RS0D10. doi:10.1029/2010RS004588

    Article  Google Scholar 

  • Tang L, Zhang X, Li Z (2015) Observation of ionospheric disturbances induced by the 2011 Tohoku tsunami using far-field GPS data in Hawaii. Earth Planets Space 67:88. doi:10.1186/s40623-015-0240-0

    Article  Google Scholar 

  • Tang W, Jin L, Xu K (2014) Performance analysis of ionosphere monitoring with BeiDou CORS observational data. J Navig 67:511–522

    Article  Google Scholar 

  • Teunissen P, De Jonge P, Tiberius C (1997) The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans. J Geod 71:589–602

    Article  Google Scholar 

  • Teunissen PJ (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70:65–82

    Article  Google Scholar 

  • Wang M, Gao Y (2001) An investigation on GPS receiver initial phase bias and its determination. In: Proceedings of the 2007 national technical meeting of the institute of navigation, pp 873–880

  • Xue J, Song S, Zhu W (2015) Estimation of differential code biases for Beidou navigation system using multi-GNSS observations: how stable are the differential satellite and receiver code biases? J Geod 90(4):309–321

    Article  Google Scholar 

  • Yang Y, Li J, Xu J, Tang J, Guo H, He H (2011) Contribution of the compass satellite navigation system to global PNT users. Chin Sci Bull 56:2813–2819

    Article  Google Scholar 

  • Yao Y, Chen P, Zhang S, Chen J (2013) A new ionospheric tomography model combining pixel-based and function-based models. Adv Space Res 52:614–621

    Article  Google Scholar 

  • Yunbin Y et al (2015) Monitoring the ionosphere based on the Crustal Movement Observation Network of China. Geod Geodyn 6(2):73–80

    Article  Google Scholar 

  • Zhang B, Teunissen PJG (2015) Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines. Sci Bull 60:1840–1849

    Article  Google Scholar 

  • Zhang R, Song W, Yao Y, Shi C, Lou Y, Yi W (2015) Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China. GPS Solut 19:649–658

    Article  Google Scholar 

  • Zhong J, Lei J, Dou X, Yue X (2015) Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability? GPS Solut. doi:10.1007/s10291-015-0437-5

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the CAS/KNAW joint research project “Compass, Galileo and GPS for Improved Ionosphere Modelling”, the Positioning Program Project 1.19 “Multi-GNSS PPP-RTK Network Processing” of the Cooperative Research Centre for Spatial Information (CRC-SI), the National key Research Program of China “Collaborative Precision Positioning Project” (No. 2016YFB0501900) and the National Natural Science Foundation of China (Nos. 41604031, 41374043, 41574015). The first author is supported by the CAS Pioneer Hundred Talents Program. The second author is the recipient of an Australian Research Council (ARC) Federation Fellowship (Project Number FF0883188). All this support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baocheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Teunissen, P.J.G. & Yuan, Y. On the short-term temporal variations of GNSS receiver differential phase biases. J Geod 91, 563–572 (2017). https://doi.org/10.1007/s00190-016-0983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0983-9

Keywords

Navigation