Skip to main content
Log in

Orbit determination of the SELENE satellites using multi-satellite data types and evaluation of SELENE gravity field models

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18 m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether 1-day data overlaps or 1-day predictions are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki H, Ooe M, Tsubokawa T, Kawano N, Hanada H, Heki K (1999) Lunar laser altimetry in the SELENE project. Adv. Space Res. 23(11): 1813–1816

    Article  Google Scholar 

  • Araki H, Tazawa S, Noda H, Ishihara Y, Goossens S, Sasaki S, Kawano N, Kamiya I, Otake H, Oberst J, Shum C (2009) Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science 323: 897–900. doi:10.1126/science.1164146

    Article  Google Scholar 

  • Carranza E, Konopliv A, Ryne M (1999) Lunar prospector orbit determination uncertainties using the high resolution lunar gravity field models. In: Advances in the Astronautical Sciences, AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, vol 103, pp 381–400, AAS paper 99–325

  • Floberghagen R (2002) Lunar gravimetry, astrophysics and space science library, vol 273. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Goossens S, Matsumoto K (2007) Lunar satellite orbit determination analysis and quality assessment from Lunar Prospector tracking data and SELENE simulations. Adv. Space Res. 40(1): 43–50. doi:10.1016/j.asr.2006.12.008

    Article  Google Scholar 

  • Goossens S, Matsumoto K, Liu Q, Kikuchi F, Sato K, Hanada H, Ishihara Y, Noda H, Kawano N, Namiki N, Iwata T, Lemoine FG, Rowlands DD, Harada Y, Chen M (2011) Lunar gravity field determination using SELENE same-beam differential VLBI tracking data. J. Geodesy. doi:10.1007/s00190-010-0430-2

  • Hanada H, Iwata T, Namiki N, Kawano N, Asari K, Ishikawa T, Kikuchi F, Liu Q, Matsumoto K, Noda H, Tsuruta S, Goossens S, Iwadate K, Kameya O, Tamura Y, Hong X, Ping J, Aili Y, Ellingsen S, Schlüter W (2008) VLBI for better gravimetry in SELENE. Adv. Space Res. 42: 341–346. doi:10.1016/j.asr.2007.11.003

    Article  Google Scholar 

  • Hanada H, Iwata T, Liu Q, Kikuchi F, Matsumoto K, Goossens S, Harada Y , Asari K, Ishikawa T, Ishihara Y, Noda H, Tsuruta S, Petrova N, Kawano N, Sasaki S, Sato K, Namiki N, Kono Y, Iwadate K, Kameya O, Shibata KM, Tamura Y, Kamata S, Yahagi Y, Masui W, Tanaka K, Maejima H, Hong X, Ping J, Shi X, Huang Q, Aili Y, Ellingsen S, Schlüter W (2010) Overview of differential VLBI observations of lunar orbiters in SELENE (Kaguya) for precise orbit determination and lunar gravity field study. Space Sci. Rev. 154: 123–144. doi:10.1007/s11214-010-9656-9

    Article  Google Scholar 

  • Haruyama J, Matsunaga T, Ohtake M, Morota T, Honda C, Yokota Y, ToriiM, Ogawa Y, the LISMWorking Group (2008) Global lunarsurface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth Planets Space 60:243–255

    Google Scholar 

  • Kato M, Sasaki S, Tanaka K, Iijima Y, Takizawa Y (2008) The Japanese lunar mission SELENE: science goals and present status. Adv. Space Res. 42(2): 294–300. doi:10.1016/j.asr.2007.03.049

    Article  Google Scholar 

  • Kikuchi F, Liu Q, Hanada H, Kawano N, Matsumoto K, Iwata T, Goossens S, Asari K, Ishihara Y, Tsuruta S, Ishikawa T, Noda H, Namiki N, Petrova N, Harada Y, Ping J, Sasaki S (2009) Pico-second accuracy VLBI of the two sub-satellites of SELENE (KAGUYA) using multi-frequency and same-beam methods. Radio Sci. 44(RS2008). doi:10.1029/2008RS003997

  • Konopliv AS, Yuan DN (1999) Lunar Prospector 100th degree gravity model development. 30th Lunar and Planetary Science Conference, 15–19 March, Houston, Texas, abstract number 1067

  • Konopliv AS, Asmar SW, Carranza E, Sjogren WL, Yuan DN (2001) Recent gravity models as a result of the lunar prospector mission. Icarus 150: 1–18

    Article  Google Scholar 

  • Konopliv AS, Yoder CF, Standish EM, Yuan DN, Sjogren WL (2006) A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182: 23–50

    Article  Google Scholar 

  • Lemoine FGR, Smith DE, Zuber MT, Neumann GA, Rowlands DD (1997) A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data. J. Geophys. Res. 102(E7): 16,339–16,359

    Article  Google Scholar 

  • Lemoine FG, Smith DE, Rowlands DD, Zuber MT, Neumann GA, Chinn DS, Pavlis DE (2001) An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. 106(E10): 23,359–23,376

    Article  Google Scholar 

  • Lemoine FG, Zelensky NP, Chinn DS, Beckley BD, Lillibridge JL (2006) Towards the GEOSAT Follow-O Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing. AAS paper 2006-6402, AIAA/AAS Astrodynamics Specialist Conference. Am. Inst. of Aeronaut. Astronaut., Keystone, Colorado, Aug 21–24

  • Liu Q, Kikuchi F, Matsumoto K, Goossens S, Hanada H, Harada Y, Shi X, Huang Q, Ishikawa T, Tsuruta S, Asari K, Ishihara Y, Kawano N, Kamata S, Iwata T, Noda H, Namiki N, Sasaki S, Ellingsen S, Sato K, Shibata K, Tamura Y, Jike T, Iwadate K, Kameya O, Ping J, Xia B, An T, Fan Q, Hong X, Yang W, Zhang H, Aili Y, Reid B, Hankey W, McCallum J, Kronschnabl G, Schlüter W (2010) Same-beam VLBI observations of SELENE for improving lunar gravity field model. Radio Sci. 45(RS2004). doi:10.1029/2009RS004203

  • Luthcke SB, Rowlands DD, McCarthy JJ, Pavlis DE, Stoneking E (2000) Spaceborne laser-altimeter-pointing bias calibration from range residual analysis. J. Spacecr. Rockets 37(3): 374–384

    Article  Google Scholar 

  • Matsumoto K, Goossens S, Ishihara Y, Liu Q, Kikuchi F, Iwata T, Namiki N, Noda H, Hanada H, Kawano N, Lemoine FG, Rowlands DD (2010) An improved lunar gravity field model from SELENE and historical tracking data: revealing the farside gravity features. J. Geophys. Res. 115(E06007). doi:10.1029/2009JE003499

  • Mazarico E, Lemoine FG, Han SC, Smith DE (2010) GLGM-3, a degree 150 lunar gravity model from the historical tracking data of NASA Moon orbiters. J. Geophys. Res. 115(E05001). doi:10.1029/2009JE003472

  • Montenbruck O, Gill E (2000) Satellite orbits. Springer, Heidelberg

    Google Scholar 

  • Namiki N, Hanada H, Tsubokawa T, Kawano N, Ooe M, Heki K, Iwata T, Ogawa M, Takano T, RSAT/VRAD/LALT mission groups (1999) Selenodetic experiments of SELENE: relay subsatellite, differential VLBI and laser altimeter. Adv. Space Res. 23(11):1817–1820

    Article  Google Scholar 

  • Namiki N, Iwata T, Matsumoto K, Hanada H, Noda H, Goossens S, Ogawa M, Kawano N, Asari K, Tsuruta S, Ishihara Y, Liu Q, Kikuchi F, Ishikawa T, Sasaki S, Aoshima C, Kurosawa K, Sugita S, Takano T (2009) Farside gravity field of the moon from four-way Doppler measurements of SELENE (Kaguya). Science 323: 900–905. doi:10.1126/science.1168029

    Article  Google Scholar 

  • Neumann GA, Rowlands DD, Lemoine FG, Smith DE, Zuber MT (2001) Crossover analysis of Mars orbiter laser altimeter data. J. Geophys. Res. 106(E10): 23753–23768

    Article  Google Scholar 

  • Noda H, Araki H, Goossens S, Ishihara Y, Matsumoto K, Tazawa S, Kawano N, Sasaki S (2008) Illumination conditions at the lunar polar regions by KAGUYA (SELENE) laser altimeter. Geophys. Res. Lett. 35: l24203. doi:10.1029/2008GL035692

    Article  Google Scholar 

  • Pavlis DE, Poulose S, McCarthy J (2006) GEODYN II system description, vol 1–5. contractor report, SGT Inc., Greenbelt, MD

  • Rowlands DD, Pavlis DE, Lemoine FG, Neumann GA, Luthcke SB (1999) The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor. Geophys. Res. Lett. 26(9): 1191–1194

    Article  Google Scholar 

  • Rowlands DD, Lemoine FG, Chinn DS, Luthcke SB (2009) A simulation study of multi-beam altimetry for lunar reconnaissance orbiter and other planetary missions. J. Geodesy 83(8): 709–721

    Article  Google Scholar 

  • Scharroo R, Visser P (1998) Precise orbit determination and gravity field improvement for the ERS satellites. J. Geophys. Res. 103(C4): 8113–8127

    Article  Google Scholar 

  • Shum CK, Zhang BH, Schutz BE, Tapley BD (1990) Altimeter crossover methods for precision orbit determination and the mapping of geophysical parameters. J. Astronaut. Sci. 38(3): 355–368

    Google Scholar 

  • Smith DE, Zuber MT, Frey HV, Garvin JB, Head JW, Muhleman DO, Pettengill GH, Phillips RJ, Solomon SC, Zwally HJ, Banerdt WB, Duxbury TC, Golombek MP, Lemoine FG, Neumann GA, Rowlands DD, Aharonson O, Ford PG, Ivanov AB, Johnson CL, McGovern PJ, Abshire JB, Afzal RS, Sun X (2001) Mars orbiter laser altimeter: Experiment summary after the first year of global mapping of mars. J. Geophys. Res. 106: 23,689–23,722. doi:10.1029/2000JE001364

    Google Scholar 

  • Smith DE, Zuber MT, Jackson GB, Cavanaugh JF, Neumann GA, Riris H, Sun X, Zellar RS, Coltharp C, Connelly J, Katz RB, Kleyner I, Liiva P, Matuszeski A, Mazarico EM, McGarry JF, Novo-Gradac A, Ott MN, Peters C, Ramos-Izquierdo LA, Ramsey L, Rowlands DD, Schmidt S, Scott VS, Shaw GB, Smith JC, Swinski J, Torrence MH, Unger G, Yu AW, Zagwodzki TW (2010) The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Sci. Rev. 150: 209–241. doi:10.1007/s11214-009-9512-y

    Article  Google Scholar 

  • Thornton CL, Border JS (2000) Radiometric Tracking Techniques for Deep-Space Navigation. Monograph 1, Deep-Space Communications and Navigation Series, Jet Propulsion Laboratory, JPL Publication 00-11

  • Weischede F, Gill E, Montenbruck O, Floberghagen R (1999) Lunar prospector orbit determination and gravity field modeling based on Weilheim 3-way Doppler measurements. J. Brazilian Soc. Mech. Sci. XXI:280–286, proceedings 14th International Symposium on Space Flight Dynamics, Brazil, 8–12 February

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans. AGU 72: 441

    Article  Google Scholar 

  • Williams JG, Boggs DH, Folkner WM (2008) DE421 lunar orbit, physical librations, and surface conditions. Tech. rep., Jet Propulsion Laboratory, JPL Memorandum IOM 335-JW, DB, WF-20080314-001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Goossens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goossens, S., Matsumoto, K., Rowlands, D.D. et al. Orbit determination of the SELENE satellites using multi-satellite data types and evaluation of SELENE gravity field models. J Geod 85, 487–504 (2011). https://doi.org/10.1007/s00190-011-0446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0446-2

Keywords

Navigation