Skip to main content
Log in

Lunar gravity field determination using SELENE same-beam differential VLBI tracking data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A lunar gravity field model up to degree and order 100 in spherical harmonics, named SGM100i, has been determined from SELENE and historical tracking data, with an emphasis on using same-beam S-band differential VLBI data obtained in the SELENE mission between January 2008 and February 2009. Orbit consistency throughout the entire mission period of SELENE as determined from orbit overlaps for the two sub-satellites of SELENE involved in the VLBI tracking improved consistently from several hundreds of metres to several tens of metres by including differential VLBI data. Through orbits that are better determined, the gravity field model is also improved by including these data. Orbit determination performance for the new model shows improvements over earlier 100th degree and order models, especially for edge-on orbits over the deep far side. Lunar Prospector orbit determination shows an improvement of orbit consistency from 1-day predictions for 2-day arcs of 6 m in a total sense, with most improvement in the along and cross-track directions. Data fit for the types and satellites involved is also improved. Formal errors for the lower degrees are smaller, and the new model also shows increased correlations with topography over the far side. The estimated value for the lunar GM for this model equals 4902.80080±0.0009 km3/s2 (10 sigma). The lunar degree 2 potential Love number k 2 was also estimated, and has a value of 0.0255 ± 0.0016 (10 sigma as well).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki H, Tazawa S, Noda H, Ishihara Y, Goossens S, Sasaki S, Kawano N, Kamiya I, Otake H, Oberst J, Shum C (2009) Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science 323: 897–900. doi:10.1126/science.1164146

    Article  Google Scholar 

  • Bills BG (1995) Discrepant estimates of moments of inertia of the Moon. J Geophys Res 100(E12): 26297–26303

    Article  Google Scholar 

  • Border JS, Folkner WM, Kahn RD, Zukor KS (1992) Precise tracking of the Magellan and Pioneer Venus Orbiters by same-beam interferometry. Part I: data accuracy analysis. Tech. Rep. TDA Progress Report 42-110, Jet Propulsion Laboratory

  • Carranza E, Konopliv A, Ryne M (1999) Lunar prospector orbit determination uncertainties using the high resolution lunar gravity field models. In: Advances in the astronautical sciences. AAS/AIAA astrodynamics specialist conference, Girdwood, Alaska, vol 103, pp 381–400. AAS paper 99-325

  • Counselman CC III (1973) Very-long baseline interferometry techniques applied to problems of geodesy, geophysics, planetary science, astronomy, and general relativity. Proc IEEE 61(9): 1225–1230

    Article  Google Scholar 

  • Counselman CC III, Hinteregger HF, Shapiro II (1972) Astronomical applications of differential interferometry. Science 178: 607–608

    Article  Google Scholar 

  • Counselman CC III, Hinteregger HF, King RW, Shapiro II (1973) Precision selenodesy via differential interferometry. Science 181: 772–774

    Article  Google Scholar 

  • Counselman CC III, Gourevitch SA, King RW, Pettengill GH, Prinn RG, Shapiro II, Miller RB, Smith JR, Ramos R, Liebrecht P (1979) Wind velocities on Venus: vector determination by radio interferometry. Science 203: 805–806

    Article  Google Scholar 

  • Floberghagen R (2002) Lunar gravimetry, astrophysics and space science. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Folkner WM, Border JS, Nandi S, Zukor KS (1993) Precise tracking of the Magellan and Pioneer Venus Orbiters by same-beam interferometry. Part II: Orbit determination analysis. Tech. Rep. TDA Progress Report 42-113. Jet Propulsion Laboratory

  • Folkner WM, Williams JG, Boggs DH (2009) The Planetary and Lunar Ephemeris DE 421. Tech. Rep. IPN Progress Report 42-178. Jet Propulsion Laboratory

  • Goossens S, Matsumoto K (2007) Lunar satellite orbit determination analysis and quality assessment from Lunar Prospector tracking data and SELENE simulations. Adv Space Res 40(1): 43–50. doi:10.1016/j.asr.2006.12.008

    Article  Google Scholar 

  • Goossens S, Matsumoto K (2008) Lunar degree 2 potential Love number determination from satellite tracking data. Geophys Res Lett 35: L02204. doi:10.1029/2007GL031960

    Article  Google Scholar 

  • Hanada H, Iwata T, Namiki N, Kawano N, Asari K, Ishikawa T, Kikuchi F, Liu Q, Matsumoto K, Noda H, Tsuruta S, Goossens S, Iwadate K, Kameya O, Tamura Y, Hong X, Ping J, Aili Y, Ellingsen S, Schlüter W (2008) VLBI for better gravimetry in SELENE. Adv Space Res 42: 341–346. doi:10.1016/j.asr.2007.11.003

    Article  Google Scholar 

  • Hanada H, Iwata T, Liu Q, Kikuchi F, Matsumoto K, Goossens S, Harada Y, Asari K, Ishikawa T, Ishihara Y, Noda H, Tsuruta S, Petrova N, Kawano N, Sasaki S, Sato K, Namiki N, Kono Y, Iwadate K, Kameya O, Shibata KM, Tamura Y, Kamata S, Yahagi Y, Masui W, Tanaka K, Maejima H, Hong X, Ping J, Shi X, Huang Q, Aili Y, Ellingsen S, Schlüter W (2010) Overview of differential VLBI observations of lunar orbiters in SELENE (Kaguya) for precise orbit determination and lunar gravity field study. Space Sci Rev 154:123–144. doi:10.1007/s11214-010-9656-9

    Google Scholar 

  • Heki K, Matsumoto K, Floberghagen R (1999) Three-dimensional tracking of a lunar satellite with differential very-long baseline-interferometry. Adv Space Res 23(11): 1821–1824

    Article  Google Scholar 

  • Kato M, Sasaki S, Tanaka K, Iijima Y, Takizawa Y (2008) The Japanese lunar mission SELENE: science goals and present status. Adv Space Res 42(2): 294–300. doi:10.1016/j.asr.2007.03.049

    Article  Google Scholar 

  • Kaula WM (1966) Theory of Satellite Geodesy, applications of satellites to Geodesy. Blaisdell Publishing Company, Waltham

    Google Scholar 

  • Kikuchi F, Liu Q, Matsumoto K, Hanada H, Kawano N (2008) Simulation analysis of differential phase delay estimation by same beam VLBI method. Earth Planets Space 60: 391–406

    Google Scholar 

  • Kikuchi F, Liu Q, Hanada H, Kawano N, Matsumoto K, Iwata T, Goossens S, Asari K, Ishihara Y, Tsuruta S, Ishikawa T, Noda H, Namiki N, Petrova N, Harada Y, Ping J, Sasaki S (2009) Pico-second accuracy VLBI of the two sub-satellites of SELENE (KAGUYA) using multi-frequency and same-beam methods. Radio Sci 44(RS2008). doi:10.1029/2008RS003997

  • King RW, Counselman CC III, Shapiro II (1976) Lunar dynamics and selenodesy: results from analysis of VLBI and laser data. J Geophys Res 81(35): 6251–6256

    Article  Google Scholar 

  • Kobayashi H, Sasao T, Kawaguchi N, Manabe S, Omodaka T, Kameya O, Shibata KM, Miyaji T, Honma M, Tamura Y, Hirota ST, Kuji S, Horiai K, Sakai S, Sato K, Iwadate K, Kanya Y, Ujihara H, Jike T, Fujii T, Oyama T, Kurayama H, Suda H, Sakakibara S, Kamohara R, Kasuga T (2003) VERA project. In: Minh YC (ed) Astronomical Society of the Pacific Conference Series, vol 306, pp 48P+

  • Kono Y, Hanada H, Ping J, Koyama Y, Fukuzaki Y, Kawano N (2003) Precise positioning of spacecrafts by multi-frequency VLBI. Earth Planets Space 55: 581–589

    Google Scholar 

  • Konopliv AS, Yuan DN (1999) Lunar prospector 100th degree gravity model development. In: 30th Lunar and Planetary Science Conference. Abstract number 1067

  • Konopliv AS, Sjogren WL, Wimberly RN, Cook RA, Vijayaraghavan A (1993) A high resolution lunar gravity field and predicted orbit behavior. In: AAS/AIAA astrodynamics conference, Victoria, British Columbia, Canada, pp 1275–1294. AAS Paper 93-622

  • Konopliv AS, Binder AB, Hood LL, Kucinkas AB, Sjogren WL, Williams JG (1998) Improved gravity field of the Moon from lunar prospector. Science 281(5382): 1476–1480

    Article  Google Scholar 

  • Konopliv AS, Asmar SW, Carranza E, Sjogren WL, Yuan DN (2001) Recent gravity models as a result of the Lunar Prospector Mission. Icarus 150: 1–18

    Article  Google Scholar 

  • Lemoine FGR, Smith DE, Zuber MT, Neumann GA, Rowlands DD (1997) A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data. J Geophys Res 102(E7): 16,339–16,359

    Article  Google Scholar 

  • Liu Q, Kikuchi F, Matsumoto K, Asari K, Tsuruta S, Ping J, Hanada H, Kawano N (2007) Error analysis of same-beam differential VLBI technique using two selene satellites. Adv Space Res 40(1): 51–57. doi:10.1016/j.asr.2007.02.044

    Article  Google Scholar 

  • Liu Q, Kikuchi F, Matsumoto K, Goossens S, Hanada H, Harada Y, Shi X, Huang Q, Ishikawa T, Tsuruta S, Asari K, Ishihara Y, Kawano N, Kamata S, Iwata T, Noda H, Namiki N, Sasaki S, Ellingsen S, Sato K, Shibata K, Tamura Y, Jike T, Iwadate K, Kameya O, Ping J, Xia B, An T, Fan Q, Hong X, Yang W, Zhang H, Aili Y, Reid B, Hankey W, McCallum J, Kronschnabl G, Schlüter W (2010a) Same-beam VLBI observations of SELENE for improving lunar gravity field model. Radio Sci 45(RS2004). doi:10.1029/2009RS004203

  • Liu Q, Matsumoto K, Iwata T, Namiki N, Noda H, Hanada H, Ishihara Y, Goossens S, Kikuchi F, Asari K, Tsuruta S, Ishikawa T, Sasaki S, Takano T (2010b) Effect of in-situ phase characteristics of antennas onboard flying spin satellites on Doppler measurements for lunar gravity field. IEEE Trans Aerospace Electron Syst (in press)

  • Luthcke SB, Marshall JA, Rowton SC, Rachlin KE, Cox CM, Williamson RG (1997) Enhanced radiative force modelling of the tracking and data relay satellites. J Astronaut Sci 45(3): 349– 370

    Google Scholar 

  • Marshall JA, Luthcke SB (1994) Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination. J Spacecraft Rockets 31(1): 99–105

    Article  Google Scholar 

  • Matsumoto K, Hanada H, Namiki N, Iwata T, Goossens S, Tsuruta S, Kawano N, Rowlands DD (2008) A simulation study for anticipated accuracy of lunar gravity field model by SELENE tracking data. Adv Space Res 42: 331–336. doi:10.1016/j.asr.2007.03.066

    Article  Google Scholar 

  • Matsumoto K, Goossens S, Ishihara Y, Liu Q, Kikuchi F, Iwata T, Namiki N, Noda H, Hanada H, Kawano N, Lemoine FG, Rowlands DD (2010) An improved lunar gravity field model from SELENE and historical tracking data: revealing the farside gravity features. J Geophys Res 115(E06007). doi:10.1029/2009JE003499

  • Mazarico E, Lemoine FG, Han SC, Smith DE (2010) GLGM-3, a degree 150 lunar gravity model from the historical tracking data of NASA Moon orbiters. J Geophys Res 115(E05001). doi:10.1029/2009JE003472

  • RSAT/VRAD/LALT Mission Groups: (1999) Selenodetic experiments of SELENE: relay subsatellite, differential VLBI and laser altimeter. Adv Space Res 23(11): 1817–1820

    Article  Google Scholar 

  • Namiki N, Iwata T, Matsumoto K, Hanada H, Noda H, Goossens S, Ogawa M, Kawano N, Asari K, Tsuruta S, Ishihara Y, Liu Q, Kikuchi F, Ishikawa T, Sasaki S, Aoshima C, Kurosawa K, Sugita S, Takano T (2009) Farside gravity field of the Moon from four-way Doppler measurements of SELENE (Kaguya). Science 323: 900–905. doi:10.1126/science.1168029

    Article  Google Scholar 

  • Pavlis DE, Poulose S, McCarthy J (2006) GEODYN II system description, vols. 1–5. Contractor report, SGT Inc., Greenbelt, MD

  • Preston RA, Hildebrand CE, Purcell GH, Ellis J, Stelzried CT, Finley SG, Sagdeev RZ, Linkin VM, Kerzhanovich VV, Altunin VI, Kogan LR, Kostenko VI, Matveenko LI, Pogrebenko SV, Strukov IA, Akim EL, Alexandrov YN, Armand NA, Bakitko RN, Vyshlov AS, Bogomolov AF, Gorchankov YN, Selivanov AS, Ivanov NM, Tichonov VF, Blamont JE, Boloh L, Laurans G, Boischot A, Biraud F, Ortega-Molina A, Rosolen C, Petit G (1986) Determination of Venus winds by ground-based radio tracking of the VEGA balloons. Science 231: 1414–1416. doi:10.1126/science.231.4744.1414

    Article  Google Scholar 

  • Sagdeev RZ, Linkin VM, Blamont JE, Preston RA (1986) The VEGA Venus balloon experiment. Science 231: 1407–1408

    Article  Google Scholar 

  • Salzberg IM (1973) Tracking the Apollo lunar rover with interferometry techniques. Proc IEEE 61(9): 1233–1236

    Article  Google Scholar 

  • Seeber G (2003) Satellite geodesy: foundations, methods, and applications. Walter de Gruyter GmbH & Co., Berlin

    Google Scholar 

  • Thornton CL, Border JS (2000) Radiometric tracking techniques for deep-space navigation. Monograph 1, deep-space communications and navigation series. Jet Propulsion Laboratory, JPL Publication 00-11

  • Ullman R (2002) SOLVE program, users guide. Contract nas5-31760, task 103, Raytheon STX corporation. Revised by J.J. McCarthy

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72: 441

    Article  Google Scholar 

  • Wieczorek MA, Simons FJ (2005) Localized spectral analysis on the sphere. Geophys J Int 162: 655–675. doi:10.1111/j.1365-246X.2005.02687.x

    Article  Google Scholar 

  • Wieczorek MA, Joliff BL, Khan A, Pritchard ME, Weiss BP, Williams JG, Hood LL, Righter K, Neal CR, Shearer C, McCallum IS, Tompkins S, Hawke BR, Peterson C, Gillis JJ, Bussey B (2006) The constitution and structure of the lunar interior. Rev Mineral Geochem 60: 221–364

    Article  Google Scholar 

  • Williams JG, Boggs DH (2008) Lunar core and mantle. What does LLR see? In: Proceedings of the 16th international workshop on laser ranging, Poznan, Poland, pp 101–121

  • Williams JG, Boggs DH, Yoder CF, Ratcliff JT, Dickey JO (2001) Lunar rotational dissipation in solid body and Molten core. J Geophys Res 106(E11): 27933–27968

    Article  Google Scholar 

  • Williams JG, Boggs DH, Folkner WM (2008) DE421 lunar orbit, physical librations, and surface conditions. Technical report, Jet Propulsion Laboratory, JPL Memorandum IOM 335-JW, DB, WF-20080314-001

  • Williams JG, Boggs DH, Ratcliff JT (2010) Lunar fluid core moment. In: 41st Lunar and planetary science conference. Abstract 2336

  • Witasse O, Lebreton J, Bird MK, Dutta-Roy R, Folkner WM, Preston RA, Asmar SW, Gurvits LI, Pogrebenko SV, Avruch IM, Campbell RM, Bignall HE, Garrett MA, van Langevelde HJ, Parsley SM, Reynolds C, Szomoru A, Reynolds JE, Phillips CJ, Sault RJ, Tzioumis AK, Ghigo F, Langston G, Brisken W, Romney JD, Mujunen A, Ritakari J, Tingay SJ, Dodson RG, van’t Klooster CGM, Blancquaert T, Coustenis A, Gendron E, Sicardy B, Hirtzig M, Luz D, Negrao A, Kostiuk T, Livengood TA, Hartung M, de Pater I, Ádámkovics M, Lorenz RD, Roe H, Schaller E, Brown M, Bouchez AH, Trujillo CA, Buratti BJ, Caillault L, Magin T, Bourdon A, Laux C (2006) Overview of the coordinated ground-based observations of Titan during the Huygens mission. J Geophys Res 111(E10). doi:10.1029/2005JE002640

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Goossens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goossens, S., Matsumoto, K., Liu, Q. et al. Lunar gravity field determination using SELENE same-beam differential VLBI tracking data. J Geod 85, 205–228 (2011). https://doi.org/10.1007/s00190-010-0430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0430-2

Keywords

Navigation