Skip to main content
Log in

Geodetic constraints from multi-beam laser altimeter crossovers

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The round-trip travel time measurements made by spacecraft laser altimeters are primarily used to construct topographic maps of the target body. The accuracy of the calculated bounce point locations of the laser pulses depends on the quality of the spacecraft trajectory reconstruction. The trajectory constraints from Doppler and range radio tracking data can be supplemented by altimetric “crossovers”, to greatly improve the reconstruction of the spacecraft trajectory. Crossovers have been used successfully in the past (e.g., Mars Orbiter Laser Altimeter on Mars Global Surveyor), but only with single-beam altimeters. The same algorithms can be used with a multi-beam laser altimeter, but we present a method using the unique cross-track topographic information present in the multi-beam data. Those crossovers are especially adapted to shallow (small angle) intersections, as the overlapping area is large, reducing the inherent ambiguities of single-beam data in that situation. We call those “swath crossovers”. They prove particularly useful in the case of polar-orbiting spacecraft over slowly rotating bodies, because all the non-polar crossovers have small intersection angles. To demonstrate this method, we perform a simplified simulation based on the Lunar Reconnaissance Orbiter (LRO) and its five-beam Lunar Orbiter Laser Altimeter. We show that swath crossovers over one lunar month can independently, from geometry alone, recover the imposed orbital perturbations with great accuracy (5 m horizontal, < 1 m vertical, about one order of magnitude smaller than the imposed perturbations). We also present new types of constraints that can be derived from the swath crossovers, and designed to be used in a precision orbit determination setup. In future work, we will use such multi-beam altimetric constraints with data from LRO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng AF, Barnouin-Jha O, Zuber MT, Veverka J, Smith DE, Neumann GA, Robinson M, Thomas P, Garvin JB, Murchie S, Chapman C, Prockter L (2001) Laser altimetry of small-scale features on 433 Eros from NEAR-Shoemaker. Science 292(5516): 488–491

    Article  Google Scholar 

  • Chin G, Brylow S, Foote M, Garvin J, Kasper J, Keller J, Litvak M, Mitrofanov I, Paige D, Raney K, Robinson M, Sanin A, Smith D, Spence H, Spudis P, Stern SA, Zuber M (2007) Lunar reconnaissance orbiter overview: the instrument suite and mission. Space Sci Rev. doi:10.1007/s11214-007-9153-y

  • Ivanov BA, Neukum G, Bottke WF, Hartmann WK (2002) The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate. In: Bottke WF, Cellino A, Paolicchi P, Binzel R, Arizona U (eds) Asteroids III, pp 89–101

  • Konopliv AS, Asmar SW, Carranza E, Sjogren WL, Yuan DN (2001) Recent gravity models as a result of the Lunar Prospector mission. Icarus 150(1): 1–18

    Article  Google Scholar 

  • Lemoine FG, Smith DE, Rowlands DD, Zuber MT, Neumann GA, Chinn DS (2001) An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J Geophys Res 106(E10): 23359–23376

    Article  Google Scholar 

  • Luthcke SB, McCarthy JJ, Pavlis DE, Rowlands DD, Stoneking E (2000) Spaceborne laser-altimeter-pointing bias calibration from range residual analysis. J Spacecr Rockets 37(3): 374–384

    Article  Google Scholar 

  • Namiki N, Iwata T, Matsumoto K, Hanada H, Noda H, Goossens S, Ogawa M, Kawano N, Asari K, Tsuruta S, Ishihara Y, Liu Q, Kikuchi F, Ishikawa T, Sasaki S, Aoshima C, Kurosawa K, Sugita S, Takano T (2009) Farside gravity field of the moon from four-way Doppler measurements of SELENE (Kaguya). Science 323(5916): 900–905. doi:10.1126/science.1168029

    Article  Google Scholar 

  • Neumann GA, Rowlands DD, Lemoine FG, Smith DE, Zuber MT (2001) Crossover analysis of Mars Orbiter Laser Altimeter data. J Geophys Res 106(E10): 23753–23768

    Article  Google Scholar 

  • Pavlis DE, Poulose SG, McCarthy JJ (2006) GEODYN operations manuals, contractor report. SGT Inc Greenbelt, Maryland

    Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2): 135–143

    Article  Google Scholar 

  • Rosat S, Rosenblatt P, Trinh A, Dehant V (2008) Mars and Mercury rotation variations from altimetry crossover data: Feasibility study. J Geophys Res 113(E12): E12014. doi:10.1029/2008JE003233

    Article  Google Scholar 

  • Rowlands DD, Pavlis DE, Lemoine FG, Neumann GA, Luthcke SB (1999) The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor. Geophys Res Lett 26(9): 1191–1194

    Article  Google Scholar 

  • Rowlands DD, Lemoine FG, Chinn DS, Luthcke SB (2009) A simulation study of multi-beam altimetry for Lunar Reconnaissance Orbiter and other planetary missions. J Geod 83(8): 709–721. doi:10.1007/s00190-008-0285-y

    Article  Google Scholar 

  • Smith DE, Zuber MT, Neumann GA, Lemoine FG (1997) Topography of the moon from the Clementine LIDAR. J Geophys Res 102: 1591–1611

    Article  Google Scholar 

  • Smith DE, Zuber MT, Frey HV, Garvin JB, Head JW, Muhleman DO, Pettengill GH, Phillips RJ, Solomon SC, Zwally HJ, Banerdt WB, Duxbury TC, Golombek MP, Lemoine FG, Neumann GA, Rowlands DD, Aharonson O, Ford PG, Ivanov AB, Johnson CL, McGovern PJ, Abshire JB, Afzal RS, Sun X (2001) Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J Geophys Res 106(E10): 23689–23722

    Article  Google Scholar 

  • Smith DE, Zuber MT, Jackson GB, Cavanaugh JF, Neumann GA, Riris H, Sun X, Zellar RS, Coltharp C, Connelly J, Katz RB, Kleyner I, Liiva P, Matuszeski A, Mazarico E, McGarry JF, Novo-Gradac A-M, Ott MN, Peters C, Ramos-Izquierdo LA, Ramsey L, Rowlands DD, Schmidt S, Scott III VS, Shaw GB, Smith JC, Swinski J-P, Torrence MH, Unger G, Yu AW, Zagwodzki TW (2009) The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission. Space Sci Rev. doi:10.1007/s11214-009-9512-y

  • Zuber MT, Smith DE, Solomon SC, Muhleman DO, Head JW, Garvin JB, Abshire JB, Buffon JL (1992) The Mars Orbiter Laser Altimeter investigation. J Geophys Res 97(E5): 7781–7797

    Article  Google Scholar 

  • Zuber MT, Smith DE, Cheng AF, Garvin JB, Aharonson O, Cole TD, Dunn PJ, Guo Y, Lemoine FG, Neumann GA, Rowlands DD, Torrence MH (2000) The shape of Eros from the NEAR-Shoemaker Laser Rangefinder Science 289(5487):2097–2101 doi:10.1126/science.289-5487.2097

    Google Scholar 

  • Zuber MT, Smith DE, Zellar RS, Neumann GA, Sun X, Katz RB, Kleyner I, Matuszeski A, McGarry JF, Ott MN, Ramos-Izquierdo LA, Rowlands DD, Torrence MH, Zagwodzki TW (2009) The Lunar Reconnaissance Orbiter laser ranging investigation. Space Sci Rev. doi:10.1007/s11214-009-9511-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Mazarico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazarico, E., Neumann, G.A., Rowlands, D.D. et al. Geodetic constraints from multi-beam laser altimeter crossovers. J Geod 84, 343–354 (2010). https://doi.org/10.1007/s00190-010-0379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0379-1

Keywords

Navigation