Skip to main content
Log in

Transformation of amplitudes and frequencies of precession and nutation of the earth’s rotation vector to amplitudes and frequencies of diurnal polar motion

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The temporal change of the rotation vector of a rotating body is, in the first order, identical in a space-fixed system and in a body-fixed system. Therefore, if the motion of the rotation axis of the earth relative to a space-fixed system is given as a function of time, it should be possible to compute its motion relative to an earth-fixed system, and vice versa. This paper presents such a transformation. Two models of motion of the rotation axis in the space-fixed system are considered: one consisting only of a regular (i.e., strictly conical) precession and one extended by circular nutation components, which are superimposed upon the regular precession. The Euler angles describing the orientation of the earth-fixed system with respect to the space-fixed system are derived by an analytical solution of the kinematical Eulerian differential equations. In the first case (precession only), this is directly possible, and in the second case (precession and nutation), a solution is achieved by a perturbation approach, where the result of the first case serves as an approximation and nutation is regarded as a small perturbation, which is treated in a linearized form. The transformation by means of these Euler angles shows that the rotation axis performs in the earth-fixed system retrograde conical revolutions with small amplitudes, namely one revolution with a period of one sidereal day corresponding to precession and one revolution with a period which is slightly smaller or larger than one sidereal day corresponding to each (prograde or retrograde) circular nutation component. The peculiar feature of the derivation presented here is the analytical solution of the Eulerian differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brzeziński A (1986) Contribution to the theory of polar motion for an elastic earth with liquid core. Manuscr Geodaetica 11: 226–241

    Google Scholar 

  • Capitaine N (2002) Comparison of “Old” and “New” concepts: the celestial intermediate pole and earth orientation parameters. In: Capitaine N et al (eds) Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions (Paris, April 2002). IERS Technical Note 29, BKG, Frankfurt a.M., pp 35–44

  • Capitaine N, Wallace PT, Chapront J (2003) Expressions for IAU 2000 precession quantities. Astron. Astrophys. 412: 567–586

    Article  Google Scholar 

  • Capitaine N, Williams JG, Seidelmann PK (1985) Clarifications concerning the definition and determination of the celestial ephemeris pole. Astron. Astrophys. 146: 381–383

    Google Scholar 

  • Goldstein H (1980) Classical mechanics, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  • Grafarend E (1983) Reference frame rotation—regularized by quaternions and spinors. In: Schwarz KP, Lachapelle G (eds) Geodesy in transition. Publication 60002, The University of Calgary, Calgary, Alberta, pp 185–225

  • Gross R (2007) Earth rotation variations—long period. In: Schubert G (eds) Treatise on geophysics, vol 3 (Geodesy), sect. 3.11. Elsevier, Amsterdam

    Google Scholar 

  • Klügel T, Schlüter W, Schreiber U, Schneider M (2005) Grossringlaser zur kontinuierlichen Beobachtung der Erdrotation. ZfV (Zeitschrift für Geodäsie, Geoinformation und Landmanagement) 130: 99–108

    Google Scholar 

  • Klügel T, Schreiber U, Schlüter W, Velikoseltsev A (2007) Advances in inertial earth rotation measurements—new data from the Wettzell G ring laser. Journées 2007 –Systèmes de référence spatio-temporels, Observatoire de Paris, pp 173–176

  • Lieske JH, Lederle T, Fricke W, Morando B (1977) Expressions for the precession quantities based upon the IAU (1976) system of astronomical constants. Astron. Astrophys. 58: 1–16

    Google Scholar 

  • Magnus K (1971) Kreisel—Theorie und Anwendungen. Springer, Berlin

    Google Scholar 

  • Mathews PM, Herring TA, Buffet BA (2002) Modeling of nutation-precession: new nutation series for non-rigid Earth, and insights into the Earth’s interior. J. Geophys. Res. 107: B4. doi:10.1029/2001JB000390

    Article  Google Scholar 

  • McCarthy D (1996) IERS Conventions (1996). IERS Technical Note 21

  • McCarthy D, Petit G (eds) (2004) IERS Conventions (2003). IERS Technical Note 32, BKG, Frankfurt a.M

  • McClure P (1973) Diurnal polar motion . Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Moritz H, Mueller I (1988) Earth rotation—theory and observation. Ungar, New York

    Google Scholar 

  • Mueller I (1969) Spherical and practical astronomy as applied to geodesy. Ungar, New York

    Google Scholar 

  • Newcomb S (1895) The elements of the four inner planets and the fundamental constants of astronomy. Supplement to The American Ephemeris and Nautical Almanac for 1897, Washington

  • Poinsot L (1851) Théorie nouvelle de la rotation des corps. Bachelier, Paris

    Google Scholar 

  • Richter B (1986) Entwurf eines nichtrelativistischen geodätisch-astronomischen Bezugssystems. Deutsche Geodätische Kommission, Publ. C-322, München

  • Schreiber U (1999) Ringlasertechnologie für geowissenschaftliche Anwendungen. Mitteilungen des BKG 8

  • Schreiber KU, Velikoseltsev A, Rothacher M, Klügel T, Stedman GE, Wiltshire DL (2004) Direct measurement of diurnal polar motion by ring laser gyroscopes. J. Geophys. Res. 109: B06405. doi:10.1029/2003JB002803

    Article  Google Scholar 

  • Seidelmann, K (eds) (1992). Explanatory supplement to the astronomical almanac. University Science Books, Mill Valley

    Google Scholar 

  • Souchay J, Loysel B, Kinoshita H, Folgueira M (1999) Corrections and new developments in rigid Earth nutation theory: III. Final tables REN-2000 including crossed-nutation and spin–orbit coupling effects. Astron. Astrophys. Suppl. Ser. 135: 111–131

    Article  Google Scholar 

  • Wahr J (1981) The forced nutations of an elliptical, rotating, elastic and oceanless earth. Geophys. J. R. Astron. Soc. 64: 705–727

    Google Scholar 

  • Woolard EW (1953) Theory of the rotation of the earth around its center of mass. Astronomical Papers Prepared for the Use of The American Ephemeris and Nautical Almanac, vol XV, part I, Washington

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burghard Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, B., Engels, J. & Grafarend, E. Transformation of amplitudes and frequencies of precession and nutation of the earth’s rotation vector to amplitudes and frequencies of diurnal polar motion. J Geod 84, 1–18 (2010). https://doi.org/10.1007/s00190-009-0339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-009-0339-9

Keywords

Navigation