Skip to main content
Log in

IGS contribution to the ITRF

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We examine the contribution of the International GNSS Service (IGS) to the International Terrestrial Reference Frame (ITRF) by evaluating the quality of the incorporated solutions as well as their major role in the ITRF formation. Starting with the ITRF2005, the ITRF is constructed with input data in the form of time series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth Orientation Parameters. Analysis of time series of station positions is a fundamental first step in the ITRF elaboration, allowing to assess not only the stations behavior, but also the frame parameters and in particular the physical ones, namely the origin and the scale. As it will be seen, given the poor number and distribution of SLR and VLBI co-location sites, the IGS GPS network plays a major role by connecting these two techniques together, given their relevance for the definition of the origin and the scale of the ITRF. Time series analysis of the IGS weekly combined and other individual Analysis Center solutions indicates an internal precision (or repeatability) <2 mm in the horizontal component and <5 mm in the vertical component. Analysis of three AC weekly solutions shows generally poor agreement in origin and scale, with some indication of better agreement when the IGS started to use the absolute model of antenna phase center variations after the GPS week 1400 (November 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Boucher C, Sillard P (2002a) New Trends for the realization of the international terrestrial reference system. Adv Space Res 30(2): 175–184

    Article  Google Scholar 

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10): 2214. doi:10.1029/2001JB000561

    Article  Google Scholar 

  • Altamimi Z, Sillard P, Boucher C (2004) ITRF2000: from theory to implementation. In: Sansò F (eds) V Hotine-Marussi symposium on mathematical geodesy, international association of geodesy, vol 127. Springer, Berlin, pp 157–163

    Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters, 2007. J Geophys Res 112: B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Altamimi Z, Gambis D, Bizouard C (2008) Rigorous combination to ensure ITRF and EOP consistency. In: Capitaine N (ed) Proceedings of the Journées 2007: Systemes de Référence Spatio-Temporels: the celestial reference frame for the future, Observatoire de Paris, pp 151–154

  • Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112: B07413. doi:10.1029/2006JB004913

    Article  Google Scholar 

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid earth. J Geophys Res 108(B2): 2103. doi:10.1029/2002JB002082

    Article  Google Scholar 

  • Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294(5550): 2342–2345

    Article  Google Scholar 

  • Boucher C, Altamimi Z, Duhem L (1992) ITRF 91 and its associated velocity field. IERS Technical Note No. 12, Observatoire de Paris

  • Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112: B12403. doi:10.1029/2007JB004933

    Article  Google Scholar 

  • Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2008) Geophysical excitation of translational and radial motions of the international laser ranging network. J Geophys Res (under review)

  • Dow J M, Neilan R, Gendt G (2005) The international GPS service (IGS): celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3): 320–326. doi:10.1016/j.asr.2005.05.125

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys 10(3): 761–797

    Article  Google Scholar 

  • Ferland R (2004) Reference frame working group technical report. In: Gowey K, Neilan R, Moore A (eds) IGS 2001-2002 technical reports. Jet Propulsion Laboratory Publication 04-017, Pasadena, pp 25–33. Available electronically at http://igscb.jpl.nasa.gov/overview/pubs.html

  • Ferland R (2006) Proposed IGS05 realization, IGS Mail 5447, http://igscb.jpl.nasa.gov/mail/igsmail/2006/msg00170.html

  • Ferland R, Piraszewski RM (2008) The IGS combined station coordinates, earth rotation parameters and apparent geocenter (this issue)

  • Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32: L06310. doi:10.1029/2004GL022224

    Article  Google Scholar 

  • Hugentobler U (2005) Models in GNSS data analysis. In: Presentation at “advances in GPS data processing and modelling for geodynamics” held at University College London, 9–10 November 2005. Available at http://www.research.ge.ucl.ac.ukCOMET

  • IGS (2007) IGS site guidelines, http://igscb.jpl.nasa.gov/network/guidelines/guidelines.html

  • Kouba J (1995) ITRF92/ITRF93 IGS product change, IGS Mail 0824, http://igscb.jpl.nasa.gov/mail/igsmail/1995/msg00002.html

  • Kouba J (1998) ITRF96 IGS product change, IGS Mail 1838. http://igscb.jpl.nasa.gov/mail/igsmail/1998/msg00065.html

  • Kouba J (2003) A guide to using international GPS service (IGS) products, ftp://igscb.jpl.nasa.gov/igscb/resource/pubs/GuidetoUsingIGSProducts.pdf

  • Kouba J, Ray J, Watkins MM (1998) IGS reference frame realization. In: Dow JM, Kouba J, Springer T (eds) IGS analysis center workshop proceedings, European Space Operations Centre, Darmstadt, pp 139–171. Available at http://igscb.jpl.nasa.gov/overview/pubs.html

  • McCarthy D, Petit G (2004) IERS conventions 2003, IERS technical Note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany. Accessed May 2007, http://maia.usno.navy.mil/conv2003.html

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2): 135–143

    Article  Google Scholar 

  • Ray J (2004) Reinforcing and securing the IGS reference tracking network. In: van Dam T, Francis O (eds) Proceedings of the state of GPS vertical positioning precision: separation of earth processes by space geodesy. Cahiers du Centre Europeéen de Géodynamique et de Séismologie, vol 23, pp 1–15

  • Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements, GPS solutions, vol 8, no. 4. Springer, Heidelberg. doi:10.1007/s10291-004-0110-x

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2007) Anomalous harmonics in the spectra of GPS position estimates. GPS Solution 12(1): 55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Schlueter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2): 145–150

    Article  Google Scholar 

  • Sillard P, Boucher C (2001) Review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75: 63–73

    Article  Google Scholar 

  • Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries JC, Soudarin L, Willis P (2005) The international DORIS service, IDS. Adv Space Res 36(3): 333–341. doi:10.1016/j.asr.2005.03.102

    Article  Google Scholar 

  • van Dam T, Wahr J (1987) Displacements of the earth’s surface due to atmospheric loading—effects of gravity and baseline measurements. J Geophys Res 92: 1281–1286

    Article  Google Scholar 

  • Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109: B03412. doi:10.1029/2003JB002741

    Article  Google Scholar 

  • Wu X, Heflin M, Ivins E, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111: B09401. doi:10.1029/2005JB004100

    Article  Google Scholar 

  • Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102: B8–1803518056. doi:10.1029/97JB01380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Altamimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altamimi, Z., Collilieux, X. IGS contribution to the ITRF. J Geod 83, 375–383 (2009). https://doi.org/10.1007/s00190-008-0294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-008-0294-x

Keywords

Navigation