Skip to main content
Log in

GPS seismology

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

GPS seismology uses convential geodetic models to analyze GPS data at high sampling rates, such as 1 Hz. GPS seismology results are shown for the Denali, San Simeon, Tokachi-oki, and Chuetsu earthquakes. Records for these earthquakes indicate that GPS is an excellent instrument for measuring large displacements near earthquake ruptures. GPS systems can be improved for seismic applications if their sampling rates are increased from 1 to 10 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew DC, Larson KM (2007) Finding the Repeat Times of the GPS Constellation, GPS Solutions 11(1). doi:10.1007/s10291-006-0038-4, 2007, http://www.ngs.noaa.gov/gps-toolbox/Larson.htm accessed December 20, 2007

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112: B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Beutler G, Mueller L, Neilan R (1994) The international GPS service for geodynamics (IGS). Bull Geodesique 68(1): 39–70

    Article  Google Scholar 

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2,000 km. J Geophys Res 94(B8): 10187–10203. doi:10.1029/89JB00484

    Article  Google Scholar 

  • Bilich A, Cassidy J, Larson KM (2008) GPS seismology: application to the 2002 Mw=7.9 Denali Fault Earthquake. Bull Seism Soc Am 98(2): 593–606. doi:10.1785/0120070096

    Article  Google Scholar 

  • Bock Y, Prawirodirdjo L, Melbourne TI (2004) Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys Res Lett 31: L06604. doi:10.1029/2003GL019150

    Article  Google Scholar 

  • Choi K, Bilich A, Larson KM, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett 31: L22608. doi:10.1029/2004GL021621

    Article  Google Scholar 

  • Emore G, Haase J, Choi K, Larson KM, Yamagiwa A (2007) Recovering absolute seismic displacements through combined use of 1-Hz GPS and strong motion accelerometers. Bull Seism Soc Am 97(2): 357–378. doi:10.1785/0120060153

    Article  Google Scholar 

  • Feigl K et al (1993) Space geodetic measurement of crustal deformation in central and southern California, 1984–1992. J Geophys Res 98(B12): 21677–21712. doi:10.1029/93JB02405

    Article  Google Scholar 

  • Freymueller JT, Kellogg JN, Vega V (1993) Plate motions in the North Andean region. J Geophys Res 98(B12): 21853–21864. doi:10.1029/93JB00520

    Article  Google Scholar 

  • Ge L (1999) GPS seismometer and its signal extraction. 12th Int. Tech. Meeting, Sat. Div. Inst. of Navigation, Nashville, Tennessee, pp 41–51

  • Ge L, Han S, Rizos C, Ishikawa Y, Hoshiba M, Yoshida Y, Izawa M, Hashimoto N, Himori S (2000) GPS seismometers with up to 20-Hz sampling rate. Earth Planets Space 52(10): 881–884

    Google Scholar 

  • Ge L, Han S, Rizos C (2000) Multipath mitigation using an adaptive filter. GPS Solut 4(2): 19–30

    Article  Google Scholar 

  • Genrich JF, Bock Y (1992) Rapid resolution of crustal motion at short ranges with the global positioning system. J Geophys Res 97(B3): 3261–3269. doi:10.1029/91JB02997

    Article  Google Scholar 

  • Genrich JF, Bock Y (2006) Instantaneous geodetic positioning with 10-50 Hz GPS measurements: noise characteristics and implications for monitoring networks. J Geophys Res 111: B03403. doi:10.1029/2005JB003617

    Article  Google Scholar 

  • Gomberg J, Bodin P, Larson K, Dragert H (2004) Earthquakes nucleated by transient deformations—a fundamental process evident in observations surrounding the M7.9 Denali Fault Alaska Earthquake. Nature 427: 621–624. doi:10.1038/nature02335

    Article  Google Scholar 

  • Hardebeck J et al (2004) Preliminary report on the 22 December 2003, M6.5 San Simeon, California earthquake. Seism Res Lett 75(2): 155–172

    Article  Google Scholar 

  • Hirahara K et al (1994) An experiment for GPS strain seismometer. In: Japanese Symposium on GPS, 15–16 December, Tokyo, Japan, pp 67–75

  • Ji C, Larson KM, Tan Y, Hudnut K, Choi K (2004) Slip history of the 2003 San Simeon Earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data. Geophys Res Lett 31(17): L17608. doi:10.1029/2004GL020448

    Article  Google Scholar 

  • Johnson K, Burgmann R, Larson K (2006) Frictional afterslip following the 2004 Parkfield, California earthquake. Bull Seism Soc Am 96:4b, S321. doi:10.1785/gssrl.77.4.491

  • Kouba J (2003) Measuring seismic waves induced by large earthquakes with GPS. Stud Geophys Geodaet 47(4): 741–755. doi:10.1023/A:1026390618355

    Article  Google Scholar 

  • Kouba J (2005) A possible detection of the 26 December 2004 Great Sumatra–Andaman Islands Earthquake with solution products of the international GNSS service. Stud Geophys Geodaet 49(4):463–483(21) doi:10.1007/s11200-005-0022-4

    Google Scholar 

  • Langbein J, Murray J, Snyder H (2006) Coseismic and initial postseismic deformation from the 2004 Parkfield, California, Earthquake, Observed by Global Positioning System, Electronic Distance Meter, Creepmeters, and Borehole Strainmeters. Bul Seism Soc Am 96(4B): S304–S320. doi:10.1785/0120050823

    Article  Google Scholar 

  • Larson K, Bodin P, Gomberg J (2003) Using 1 Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300: 1421–1424. doi:10.1126/science.1084531

    Article  Google Scholar 

  • Larson K, Bilich A, Axelrad P (2007) Improving the precision of high-rate GPS. J Geophys Res 112: B05422. doi:10.1029/2006JB004367

    Article  Google Scholar 

  • Lichten S, Borders J (1987) Strategies for high-precision global positioning system orbit determination. J Geophys Res 92: 12751–12762

    Article  Google Scholar 

  • Miyazaki S, Larson K, Choi K, Hikima K, Koketsu K, Bodin P, Haase J, Emore G, Yamagiwa A (2004) Modeling the rupture process of the 2003 Tokachi-Oki earthquake using 1-Hz GPS data. Geophys Res Lett 31(21): L21603. doi:10.1029/2004GL021457

    Article  Google Scholar 

  • Miyazaki S, Larson K (2008) Coseismic and early postseismic slip for the 2003 Tokachi-oki earthquake sequence inferred from GPS data. Geophys Res Lett 35: L04302. doi:10.1029/2007GL032309

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2): 3227–3246. doi:10.1029/95JB03048

    Article  Google Scholar 

  • Ohta Y, Meilano I, Sagiya T, Kimata F, Hirahara K (2006) Large surface wave of the 2004 Sumatra–Andaman earthquake captured by the very long baseline kinematic analysis of 1-Hz GPS data. Earth Planets Space 58(2): 153–157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine M. Larson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, K.M. GPS seismology. J Geod 83, 227–233 (2009). https://doi.org/10.1007/s00190-008-0233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-008-0233-x

Keywords

Navigation