Skip to main content
Log in

Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

At the beginning of the twenty-first century, a technological change took place in geodetic astronomy by the development of Digital Zenith Camera Systems (DZCS). Such instruments provide vertical deflection data at an angular accuracy level of 0.̋1 and better. Recently, DZCS have been employed for the collection of dense sets of astrogeodetic vertical deflection data in several test areas in Germany with high-resolution digital terrain model (DTM) data (10–50 m resolution) available. These considerable advancements motivate a new analysis of the method of astronomical-topographic levelling, which uses DTM data for the interpolation between the astrogeodetic stations. We present and analyse a least-squares collocation technique that uses DTM data for the accurate interpolation of vertical deflection data. The combination of both data sets allows a precise determination of the gravity field along profiles, even in regions with a rugged topography. The accuracy of the method is studied with particular attention on the density of astrogeodetic stations. The error propagation rule of astronomical levelling is empirically derived. It accounts for the signal omission that increases with the station spacing. In a test area located in the German Alps, the method was successfully applied to the determination of a quasigeoid profile of 23 km length. For a station spacing from a few 100 m to about 2 km, the accuracy of the quasigeoid was found to be about 1–2 mm, which corresponds to a relative accuracy of about 0.05−0.1 ppm. Application examples are given, such as the local and regional validation of gravity field models computed from gravimetric data and the economic gravity field determination in geodetically less covered regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boedecker G (1976) Astrogravimetrisch-topographisches Nivellement. Wiss. Arb. Lehrst. Geod. Phot. u Kart. TU Hannover Nr. 64

  • Bomford G (1980) Geodesy, Fourth edn. Clarendon Press, Oxford

    Google Scholar 

  • Bosch W, Wolf H (1974) Über die Wirkung von topographischen Lokal-Effekten bei profilweisen Lotabweichungs-Prädiktionen. Mitteilungen aus dem Institut für Theoretische Geodäsie der Universität Bonn Nr. 28

  • Bürki B (1989) Integrale Schwerefeldbestimmung in der Ivrea-Zone und deren geophysikalische Interpretation. Geodätisch-geophysikalische Arbeiten in der Schweiz, Nr. 40. Schweizerische Geodätische Kommission

  • Bürki B, Müller A, Kahle H-G (2004) DIADEM: the new digital astronomical deflection measuring system for high-precision measurements of deflections of the vertical at ETH Zurich. Electronic Proc. IAG GGSM2004 meeting in Porto, Portugal. Published also in: CHGeoid 2003, Report 03-33 A Marti U et al. (ed), Bundesamt für Landestopographie (swisstopo), Wabern, Schweiz

  • Campbell J (1971) Eine Erweiterung der Theorie des astronomischen Nivellements bei Einbeziehung von Schweremessungen. Wiss. Arb. Lehrst. Geod. Phot. u. Kart. TU Hannover Nr. 49

  • Elmiger A (1969) Studien über Berechnung von Lotabweichungen aus Massen, Interpolation von Lotabweichungen und Geoidbestimmung in der Schweiz. Mitt. Inst. Geod. Phot. ETH Zürich Nr. 12

  • Flury J (2002) Schwerefeldfunktionale im Gebirge—Modellierungsgenauigkeit, Messpunktdichte und Darstellungsfehler am Beispiel des Testnetzes Estergebirge. Deutsche Geodätische Kommission C 557

  • Flury J (2006) Short wavelength spectral properties of gravity field quantities. J Geod 79(10-11):624–640. doi: 10.1007/s00190-005-0011-y

    Article  Google Scholar 

  • Flury J, Gerlach C, Hirt C, Schirmer U (2006) Heights in the Bavarian Alps: mutual validation of GPS, levelling, gravimetric and astrogeodetic quasigeoids. Proc. Geodetic Reference Frames 2006, submitted

  • Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res 86(B9):7843–7854

    Article  Google Scholar 

  • Galle A (1914) Das Geoid im Harz. Königl. Preuß. Geod. Inst. Nr 61. Berlin

  • GOCE GRAND (2005) GOCE-Graviationsfeldanalyse Deutschland II. Joint Proposal to BMBF research theme 2 Rummel R et al. (ed) Institut für Astronomische und Physikalische Geodäsie, TU Munich

  • Gurtner W (1978) Das Geoid der Schweiz. Geodätisch-geophysikalische Arbeiten in der Schweiz, Nr. 32. Schweizerische Geodätische Kommission

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman, San Francisco

    Google Scholar 

  • Heitz S (1968) Geoidbestimmung durch Interpolation nach kleinsten Quadraten aufgrund gemessener und interpolierter Lotabweichungen. Deutsche Geodätische Kommission C 124

  • Helmert FR (1880/1884) Die mathematischen und physikalischen Theorien der höheren Geodäsie. Teubner, Leibzig (reprint Minerva, Frankfurt a.M. 1961)

  • Helmert FR (1901) Zur Bestimmung kleiner Flächenstücke des Geoids aus Lotabweichungen mit Rücksicht auf Lotkrümmung. Sitzungsberichte Königl. Preuß. Akad. der Wissenschaften zu Berlin. 2. Mitteilung:958–975

  • Hirt C (2004) Entwicklung und Erprobung eines digitalen Zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung. Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik an der Universität Hannover Nr 253. http://edok01. tib.uni-hannover.de/edoks/e01dh04/393223965.pdf

  • Hirt C (2006) Monitoring and analysis of anomalous refraction using a digital zenith camera system. Astron Astrophys 459:283–290. doi: 10.1051/0004-6361:20065485

    Article  Google Scholar 

  • Hirt C, Bürki B (2002) The digital zenith camera—a new high-precision and economic astrogeodetic observation system for real-time measurement of deflections of the vertical. In: Tziavos I (ed) Proceedings of the 3rd meeting of the international gravity and geoid commission of the international association of geodesy, Thessaloniki 161–166

  • Hirt C, Seeber G (2005) High-resolution local gravity field determination at the sub-millimeter level using a digital zenith camera system. Dynamic Planet, Cairns 2005, Tregoning P, Rizos C (eds) IAG Symposia 130:316–321

    Google Scholar 

  • Hirt C, Denker H, Flury J, Lindau A, Seeber G (2006) Astrogeodetic validation of gravimetric quasigeoid models in the German Alps—first results. Accepted paper presented at 1. Meeting of the International Gravity Field Service, Istanbul

  • Høg E, Fabricius C, Makarov VV, Urban S, Corbin T, Wycoff G, Bastian U, Schwekendiek P, Wicenec A (2000) The Tycho-2 catalogue of the 2.5 million brightest stars. Astron Astrophys 355:L27–L30

    Google Scholar 

  • Jekeli C (1999) An analysis of vertical deflections derived from high-degree spherical harmonic models. J Geod 73(1):10–22 doi: 10.1007/s001900050213

    Article  Google Scholar 

  • Jekeli C, Li X (2006) INS/GPS vector gravimetry along roads in Western Montana. OSU Report 477

  • Kobold F (1957) Die astronomischen Nivellemente in der Schweiz. ZfV 82(4):97–103

    Google Scholar 

  • Levallois JJ, Monge H (1978) Le geoid Européen, version 1978. Proceedings of the International Sympoium on the Geoid in Europe and the Mediterranean Area, Ancona, 1978:153–164

    Google Scholar 

  • Mader K (1951) Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. Öst Z Vermess Sonderheft 11

  • Marti U (1997) Geoid der Schweiz 1997. Geodätisch-geophysikalische Arbeiten in der Schweiz Nr. 56. Schweizerische Geodätische Kommission

  • Meier HK (1956) Über die Berechnung von Lotabweichungen für Aufpunkte im Hochgebirge. Deutsche Geodätische Kommission C 16

  • Molodenski MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. Translated from Russian (1960) Israel Program for Scientific Translations Ltd, Jerusalem

  • Moritz H (1980) Advanced physical geodesy. Wichmann Karlsruhe

  • Moritz H (1983) Local geoid determination in mountain regions. OSU Report 352

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74(7-8):552–560. doi: 10.1007/s001900000116

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2002) Erratum: corrections to “The gravitational potential and its derivatives for the prism”. J Geod 76(8):475–475. doi: 10.1007/s00190-002-0264-7

    Article  Google Scholar 

  • Niethammer T (1932) Nivellement und Schwere als Mittel zur Berechnung wahrer Meereshöhen. Astronomisch geodätische Arbeiten in der Schweiz, Nr 20. Schweizerische Geodätische Kommission

  • Petrović, S. (1996) Determination of the potential of homogeneous polyhedral bodies using line integrals. J Geod 71 (1):44–52. doi: 10.1007/s001900050074

    Google Scholar 

  • Tenzer R, Vanícek P, Santos M, Featherstone WE, Kuhn M (2005) The rigorous determination of orthometric heights. J Geod 79(1–3):82–92. doi: 10.1007/s00190-005-0445-2

    Article  Google Scholar 

  • Torge W (2001) Geodesy, Third edn. W. de Gruyter, Berlin

  • Tsoulis D (1999) Analytical and numerical methods in gravity field modelling of ideal and real masses. Deutsche Geodätische Kommission C 510

  • Tsoulis D (2001) Terrain correction computations for a densely sampled DTM in the Bavarian Alps. J Geod 75(5-6):291–307. doi: 10.1007/s001900100176

    Article  Google Scholar 

  • Zacharias N, Zacharias, MI, Urban SE, Høg E (2000) Comparing Tycho-2 astrometry with UCAC1. Astron J 120:1148–1152

    Article  Google Scholar 

  • Zacharias N, Urban SE, Zacharias MI, Wycoff GL, Hall DM, Monet DG, Rafferty TJ (2004) The second US naval observatory CCD astrograph catalog (UCAC2). Astron J 127:3043–3059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hirt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirt, C., Flury, J. Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. J Geod 82, 231–248 (2008). https://doi.org/10.1007/s00190-007-0173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0173-x

Keywords

Navigation