Skip to main content
Log in

Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper compares estimated terrestrial reference frames (TRF) and celestial reference frames (CRF) as well as position time-series in terms of systematic differences, scale, annual signals and station position repeatabilities using four different tropospheric mapping functions (MF): The NMF (Niell Mapping Function) and the recently developed GMF (Global Mapping Function) consist of easy-to-handle stand-alone formulae, whereas the IMF (Isobaric Mapping Function) and the VMF1 (Vienna Mapping Function 1) are determined from numerical weather models. All computations were performed at the Deutsches Geodätisches Forschungsinstitut (DGFI) using the OCCAM 6.1 and DOGS-CS software packages for Very Long Baseline Interferometry (VLBI) data from 1984 until 2005. While it turned out that CRF estimates only slightly depend on the MF used, showing small systematic effects up to 0.025 mas, some station heights of the computed TRF change by up to 13 mm. The best agreement was achieved for the VMF1 and GMF results concerning the TRFs, and for the VMF1 and IMF results concerning scale variations and position time-series. The amplitudes of the annual periodical signals in the time-series of estimated heights differ by up to 5 mm. The best precision in terms of station height repeatability is found for the VMF1, which is 5–7% better than for the other MFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10):2214. DOI: 10.1029/2001JN000561

    Article  Google Scholar 

  • Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI—a terrestrial reference frame realisation 2003. Deutsche Geodätische Kommission Reihe B Nr. 313, München

  • Boehm J, Werl B, Schuh H (2006a) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111(B2):B02406. DOI: 10.1029/2005JB003629

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006b) The global mapping function (GMF): a new empirical mapping function based on data from numerical weather model data. Geophys Res Lett 33:L07304. DOI: 10.129/2005GL025546

    Article  Google Scholar 

  • Boehm J, Mendes-Cerveira PJ, Schuh H, Tregoning P (2006c) The impact of mapping functions for the neutral atmosphere based on numerical weather models in GPS data analysis. In: IAG General Assembly, Cairns, Australia, Springer (in press)

  • Davis J, Herring T, Shapiro I, Rogers A, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modelling errors on the estimates of baseline lengths. Radio Sci 20(6):1593–1607

    Google Scholar 

  • Feissel-Vernier M (2003) Selecting stable extragalactic compact radio sources from the permanent astrogeodetic VLBI program. Astron Astrophys 403:105–110

    Article  Google Scholar 

  • IERS (1999) First extension of the ICRF, ICRF-Ext.1. In: Gambis D (ed) 1998 IERS annual report, chapter VI. Observatoire de Paris, pp 87–114

  • Ma C, Arias F, Eubanks M, Fey A, Gontier A-M, Jacobs C, Sovers OJ, Archinal B, Charlot P (1998) The international celestial reference frame as realised by very long baseline interferometry. Astron J 166:516–546

    Article  Google Scholar 

  • MacMillan D (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9):1041–1044

    Article  Google Scholar 

  • MacMillan D, Ma C (1994) Evaluation of very long baseline interferometry modeling improvements. J Geophys Res 99(B01):637–651

    Article  Google Scholar 

  • MacMillan D, Ma C (1997) Atmospheric gradients and the VLBI terrestrial and celestial references frames. Geophys Res Lett 24(4):453–456

    Article  Google Scholar 

  • Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelength. J Geophys Res 101(B2):3227–3246

    Article  Google Scholar 

  • Niell A (2001) Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys Chem Earth 26(6–8):476–480

    Google Scholar 

  • Niell A (2006) Interaction of atmosphere modeling and analysis strategy. In: Behrend D, Baver K (eds) IVS 2006 general meeting proceedings (in press)

  • Nothnagel A, Pilhatsch M, Haas R (1995) Investigations of thermal height changes of geodetic VLBI telescopes. In: Lanotte R, Bianco G (eds) Proceedings of the 10th working meeting on European VLBI for geodesy and astrometry. Matera, Agenzia Spatiale Italiana, pp 121–133

    Google Scholar 

  • Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signals in very long baseline interferometry observations. J Geophys Res 109:B03405. DOI: 10.1029/2003JB002500

    Article  Google Scholar 

  • Rothacher M (2002) Estimation of station heights with GPS. In: Drewes H, Dodson A, Fortes L, Sanchez L, Sandroval P (eds) International association of geodesy symposia: vertical reference systems. Springer, Berlin Heidelberg New York, pp 81–90

    Google Scholar 

  • Saastamoinen J (1973) Contribution to the theory of atmospheric refraction. Bull Géod 105:279–298, 106:383–397, 107: 13–34

    Google Scholar 

  • Tesmer V, Kutterer H, Drewes H (2004) Simultaneous estimation of a TRF, the EOP and a CRF. In: Vandenberg N, Baver K (eds) IVS 2004 general meeting proceedings. NASA/CP-2004–212255, pp 311–314

  • Tesmer V, Boehm J, Heinkelmann R, Schuh H (2006) Impact of analysis options on the TRF, CRF and position time series estimated from VLBI. In: Behrend D, Baver K (eds) IVS 2006 general meeting proceedings. NASA/CP-2006–214140, pp 243–251

  • Titov O, Tesmer V, Boehm J (2004) OCCAM v.6.0 software for VLBI data analysis. In: Vandenberg N, Baver K (eds) IVS 2004 general meeting proceedings. NASA/CP-2004–212255, pp 267–271

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Tesmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesmer, V., Boehm, J., Heinkelmann, R. et al. Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geod 81, 409–421 (2007). https://doi.org/10.1007/s00190-006-0126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0126-9

Keywords

Navigation