Skip to main content
Log in

Modeling thermal deformation of VLBI antennas with a new temperature model

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Temperature variations at very long baseline interferometry (VLBI) sites cause thermal deformations of the VLBI antennas and corresponding displacements of the VLBI reference points. The thermal deformation effects typically contain seasonal and daily signatures. The amplitudes of the annual vertical motion of the antenna reference point can reach several millimeters, depending on the design of the antenna structure, on the material, and on the environmental effects such as global station position, station height and climatology effects. Simple methods to correct this effect use the difference of the environmental temperature with respect to a defined reference temperature, the antenna dimensions, the elevation of the antenna, the material of antenna structure. Applying these simple models for thermal deformation in the VLBI data analysis improves the baseline length repeatability by 3.5%. A comparison of these simple models with local thermal deformation measurements at the antennas in Onsala and Wettzell show that the local measurements and the modeled corrections agree well when the temperature of the antenna structure is used, but agree less good when the surrounding air temperatures are used. To overcome this problem we present a method to model temperature penetration into the antenna structures, that allows to model thermal deformation effects that agree with the observed vertical deformation of the Onsala and Wettzell radio telescopes with a root mean square deviation of 0.07 and 0.13 mm, respectively. Possible implementations in the VLBI analysis are presented, and the definition of an adequate reference temperature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Refrence Frame for earth science applications. J Geophys Res 107(B10):2214

    Article  Google Scholar 

  • Boehm J, Heinkelmann R, Schuh H (2006) Global Pressure and Temperature (GPT): a spherical harmonics expansion of annual pressure and temperature variations for geodetic applications. J Geodesy (submitted)

  • Boucher C, Altamimi Z, Sillard P, Feissel-Vernier M (2004) The ITRF-2000. IERS technical note no. 31. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

  • Combrinck WL, Merry CL (1997) VLBI Antenna axis offset and intersection determination using GPS. J Geophys Res 102(B11):24741–24743

    Article  Google Scholar 

  • Elgered G, Carlsson TR (1995) Temperature Stability of the Onsala 20-m Antenna and its Impact on Geodetic VLBI. In: Lanotte R, Bianco G (eds.) Proceedings of the 10th Working Meeting on European VLBI for Geodesy and Astrometry, Matera, pp 69–78

  • Haas R, Scherneck H-G (2003) The IVS Analysis Center at the Onsala Space Observatory. In: Vandenberg NR, Baver KD (eds) International VLBI service for geodesy and astrometry 2002 annual report. NASA/TP-2003-211619, NASA, Greenbelt, pp 277–280

  • Haas R, Nothnagel A, Schuh H, Titov O (1999) Explanatory supplement to the section ‘Antenna Deformation’ of the IERS Conventions (1996). In: Schuh H (ed) DGFI report nr. 71, Deutsches Geodätisches Forschungsinstitut (DGFI), München, pp 26–29

  • Haas R, Nothnagel A, Campbell J, Gueguen E (2003) Recent crustal movements observed with the European VLBI network; geodetic analysis and results. J Geodyn 35:391–414

    Article  Google Scholar 

  • ISO 1 (2002) Geometrical Product Specifications (GPS). Standard reference temperature for geometrical product specification and verification (International Organization for Standardization)

  • Johansson LA, Stodne F, Wolf S (1996) The Pisa Project, variations in the height of the foundation of the 20 meter radio telescope. Research report no 178, Onsala Space Observatory, Department of Radio and Space Science, Chalmers University of Technology, Göteborg

  • Malkin Z (2002) http://giub.geod.uni-bonn.de/vlbi/IVS-AC/data/ thermal-ref-temp.html

  • McCarthy DD, Petit G (2004) IERS Conventions (2003). IERS technical note no. 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

  • Nothnagel A, Pilhatsch M, Haas R (1995) Investigations of thermal height changes of geodetic VLBI radio telescopes. In: Lanotte R, Bianco G (eds) Proceedings of the 10th working meeting on European VLBI for geodesy and astrometry, Matera, pp 121–133

  • Robinson EA (1980) Physical applications of stationary time-series with special references to digital data processing of seismic signals. Charles Griffins& Company Ltd., London

  • Skurikhina E (2001) On computation of antenna thermal deformation in VLBI data processing. In: Behrend D, Rius A (eds) Proceedings of the 15th working meeting on European VLBI for geodesy and astrometry, Barcelona, pp 124–130

  • Sovers O, Fanselow J, Jacobs C (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70(4):1393–1454

    Article  Google Scholar 

  • Thomas C, MacMillan DS (2003) Core operation center report. In: Vandenberg NR, Baver KD (eds) International VLBI service for geodesy and astrometry 2002 annual report, NASA/TP-2003–211619. Goddard Space Flight Center, MA

  • Titov O, Tesmer V, Boehm J (2004) OCCAM v. 6.0 software for VLBI data analysis. In: International VLBI service for geodesy and astrometry. In: Vandenberg NR, Baver KD (eds) Proceedings of the third IVS General Meeting, Ottawa, February, pp 267–271

  • Wresnik J (2005) Thermal deformation of VLBI – Antennas. Diploma thesis, Institute of Geodesy and Geophysics, University of Technology Vienna, http://mars.hg.tuwien.ac.at/~wresnik/Diplomarbeit_Wresnik_1.pdf

  • Wresnik J, Haas R, Boehm J, Schuh H (2005) Thermal deformation of VLBI antennas. In: Vennebusch M, Nothnagel A (eds) Proceedings of the 17th working meeting on European VLBI for geodesy and astrometry, Noto, pp 45–50

  • Zernecke R (1999) Seasonal variations in height demonstrated at the radiotelescope reference point. In: Schlüter W, Hase H (eds) Proceedings of the 13th working meeting on European VLBI for geodesy and astronomy, Viechtach, pp 15–18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Wresnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wresnik, J., Haas, R., Boehm, J. et al. Modeling thermal deformation of VLBI antennas with a new temperature model. J Geod 81, 423–431 (2007). https://doi.org/10.1007/s00190-006-0120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0120-2

Keywords

Navigation