Skip to main content
Log in

Delay analysis of a two-class batch-service queue with class-dependent variable server capacity

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we analyse the delay of a random customer in a two-class batch-service queueing model with variable server capacity, where all customers are accommodated in a common single-server first-come-first-served queue. The server can only process customers that belong to the same class, so that the size of a batch is determined by the length of a sequence of same-class customers. This type of batch server can be found in telecommunications systems and production environments. We first determine the steady state partial probability generating function of the queue occupancy at customer arrival epochs. Using a spectral decomposition technique, we obtain the steady state probability generating function of the delay of a random customer. We also show that the distribution of the delay of a random customer corresponds to a phase-type distribution. Finally, some numerical examples are given that provide further insight in the impact of asymmetry and variance in the arrival process on the number of customers in the system and the delay of a random customer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arumuganathan R, Jeyakumar S (2005) Steady state analysis of a bulk queue with multiple vacations, setup times with N-policy and closedown times. Appl Math Model 29:972–986

    Article  MATH  Google Scholar 

  • Baetens J, Steyaert B, Claeys D, Bruneel H (2016) System occupancy of a two-class batch-service queue with class-dependent variable server capacity. In: International conference on analytical and stochastic modeling techniques and applications. Springer, pp 32–44

  • Banerjee A, Gupta U (2012) Reducing congestion in bulk-service finite-buffer queueing system using batch-size-dependent service. Perform Eval 69(1):53–70

    Article  Google Scholar 

  • Banerjee A, Gupta U, Goswami V (2014) Analysis of finite-buffer discrete-time batch-service queue with batch-size-dependent service. Comput Ind Eng 75:121–128

    Article  Google Scholar 

  • Banerjee A, Gupta U, Chakravarthy S (2015) Analysis of a finite-buffer bulk-service queue under markovian arrival process with batch-size-dependent service. Comput Oper Res 60:138–149

    Article  MathSciNet  MATH  Google Scholar 

  • Bitran GR, Tirupati D (1989) Approximations for product departures from a single-server station with batch processing in multi-product queues. Manag Sci 35(7):851–878

    Article  MathSciNet  MATH  Google Scholar 

  • Boxma O, van der Wal J, Yechiali U (2008) Polling with batch service. Stoch Models 24(4):604–625

    Article  Google Scholar 

  • Bruneel H, Kim B (1993) Discrete-time models for communication systems including ATM. Kluwer Academic, Boston

    Book  Google Scholar 

  • Chang S, Choi D (2005) Performance analysis of a finite-buffer discrete-time queue with bulk arrival, bulk service and vacations. Comput Oper Res 32(9):2213–2234

    Article  MATH  Google Scholar 

  • Chang S, Takine T (2005) Factorization and stochastic decomposition properties in bulk queues with generalized vacations. Queueing Syst 50:165–183

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhry M, Chang S (2004) Analysis of the discrete-time bulk-service queue \({G}eo/{G}^{Y}/1/{N+B}\). Oper Res Lett 32(4):355–363

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhry M, Templeton J (1983) A first course in bulk queues. Wiley, New York

    MATH  Google Scholar 

  • Claeys D, Walraevens J, Laevens K, Bruneel H (2011) Analysis of threshold-based batch-service queueing systems with batch arrivals and general service times. Perform Eval 68(6):528–549

    Article  MATH  Google Scholar 

  • Claeys D, Steyaert B, Walraevens J, Laevens K, Bruneel H (2012) Tail distribution of the delay in a general batch-service queueing model. Comput Oper Res 39:2733–2741

    Article  MathSciNet  MATH  Google Scholar 

  • Claeys D, Steyaert B, Walraevens J, Laevens K, Bruneel H (2013a) Analysis of a versatile batch-service queueing model with correlation in the arrival process. Perform Eval 70(4):300–316

    Article  MATH  Google Scholar 

  • Claeys D, Steyaert B, Walraevens J, Laevens K, Bruneel H (2013b) Tail probabilities of the delay in a batch-service queueing model with batch-size dependent service times and a timer mechanism. Comput Oper Res 40(5):1497–1505

    Article  MathSciNet  MATH  Google Scholar 

  • Dorsman J, der Mei RV, Winands E (2012) Polling with batch service. OR Spectrum 34:743–761

    Article  MathSciNet  MATH  Google Scholar 

  • Fowler J, Phojanamongkolkij N, Cochran J, Montgomery D (2002) Optimal batching in a wafer fabrication facility using a multiproduct G/G/C model with batch processing. Int J Prod Res 40(2):275–292

    Article  MATH  Google Scholar 

  • Freivalds A, Niebel B (2014) Niebel’s methods, standards, and work design, vol 13. McGraw Hill, New York

    Google Scholar 

  • Germs R, Foreest NV (2010) Loss probabilities for the \({M}^{X}/{G}^{Y}/1/{K+B}\) queue. Prob Eng Inf Sci 24(4):457–471

    Article  MATH  Google Scholar 

  • Germs R, Foreest NV (2013) Analysis of finite-buffer state-dependent bulk queues. OR Spectrum 35(3):563–583

    Article  MathSciNet  MATH  Google Scholar 

  • Goswami V, Mohanty J, Samanta S (2006) Discrete-time bulk-service queues with accessible and non-accessible batches. Appl Math Comput 182:898–906

    MathSciNet  MATH  Google Scholar 

  • Huang MG, Chang PL, Chou YC (2001) Analytic approximations for multiserver batch-service workstations with multiple process recipes in semiconductor wafer fabrication. IEEE Trans Semicond Manuf 14(4):395–405

    Article  Google Scholar 

  • Janssen A, van Leeuwaarden J (2005) Analytic computation schemes for the discrete-time bulk service queue. Queueing Syst 50:141–163

    Article  MathSciNet  MATH  Google Scholar 

  • Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modeling, vol 5. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Lee H, Kim S (1994) Optimal dispatching of an infinite capacity shuttle with compound poisson arrivals: Control at a single terminal. Comput Oper Res 21(1):67–78. https://doi.org/10.1016/0305-0548(94)90063-9

    Article  MATH  Google Scholar 

  • Powell W, Humblet P (1986) The bulk service queue with a general control strategy: theoretical analysis and a new computational procedure. Oper Res 34(2):267–275

    Article  MathSciNet  MATH  Google Scholar 

  • Pradhan S, Gupta U, Samanta S (2015) Queue-length distribution of a batch service queue with random capacity and batch size dependent service: M/g r y/1. OPSEARCH pp 1–15

  • Reddy G, Nadarajan R, Kandasamy P (1993) A nonpreemptive priority multiserver queueing system with general bulk service and heterogeneous arrivals. Comput Oper Res 20(4):447–453

    Article  MATH  Google Scholar 

  • Weng W, Leachman R (1993) An improved methodology for real-time production decisions at batch-process work stations. IEEE Trans Semicond Manuf 6(3):219–225

    Article  Google Scholar 

  • Willems D (2014) Modeling of a distribution center as a queuing system. Master’s thesis, Ghent University

  • Wu K, McGinnis LF, Zwart B (2011) Approximating the performance of a batch service queue using the model. IEEE Trans Autom Sci Eng 8(1):95–102

    Article  Google Scholar 

  • Yi X, Kim N, Yoon B, Chae K (2007) Analysis of the queue-length distribution for the discrete-time batch-service \({G}eo/{G}^{a, Y}/1/{K}\) queue. Eur J Oper Res 181:787–792

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Baetens.

Additional information

Dieter Claeys is a Postdoctoral Fellow with the Research Foundation Flanders (FWO-Vlaanderen), Belgium. Part of the research has been funded by the Interuniversity Attraction Poles Programma initiated by the Belgian Science Policy Office.

Appendix A: Eliminating branching points

Appendix A: Eliminating branching points

We analyse the steady-state pgf \(D_{A,n}(z)\) for the delay of a random customer with n customers in the queue and the customer at the head of the queue is of class A. From Eq. (6) we obtain that the pgf \(D_{A,n}(z)\) is equal to

$$\begin{aligned} D_{A,n}(z)&= z\frac{(1-\sigma )z}{\lambda _1(z)-\sigma }\frac{\lambda _1(z)+\sigma (z-1)}{2\lambda _1(z)-1}\lambda _1(z)^n\\&\quad +\, z\frac{(1-\sigma )z}{\lambda _2(z)-\sigma }\frac{\lambda _2(z)+\sigma (z-1)}{2\lambda _2(z)-1}\lambda _2(z)^n. \end{aligned}$$

We note that for any polynomial f(z) with real coefficients then \(f(z)+f(z*)\), with \(z^\star \) the complex conjugate of z, gives a real number. This is also the case for the arguments \(\lambda _1(z)\) and \(\lambda _2(z)\) given by

$$\begin{aligned} \lambda _{1,2}(z) = \frac{1}{2}\Big (1\pm \sqrt{1+4\sigma (1-\sigma )(z^2-1)}\Big ), \end{aligned}$$
(25)

so that \(f(\lambda _1(z))+f(\lambda _2(z))\) is a function without roots and also without branching points. We first note that \((2\lambda _1(z)-1)\) and \((2\lambda _2(z)-1)\) can be written as

$$\begin{aligned} 2\lambda _1(z)-1&= \sqrt{1+4\sigma (1-\sigma )(z^2-1)},\\ 2\lambda _2(z)-1&= -\sqrt{1+4\sigma (1-\sigma )(z^2-1)}. \end{aligned}$$

By using Newton’s binomial expansion for the nth powers, we obtain

$$\begin{aligned}&D_{A,n}(z)= \Bigg (\frac{1}{2}\Bigg )^n\frac{(1-\sigma )z^2}{(2\lambda _1(z)-1)(\lambda _1(z)-\sigma )(\lambda _2(z)-\sigma )} \\&\quad \times \, \Bigg [ (\lambda _2(z)-\sigma )(\lambda _1(z)+\sigma (z-1)) \sum \limits _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \Big (\sqrt{1+4\sigma (1-\sigma )(z^2-1)}\Big )^k \\&\quad -\,(\lambda _1(z)-\sigma )(\lambda _2(z)+\sigma (z-1)) \sum \limits _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \Big (-\sqrt{1+4\sigma (1-\sigma )(z^2-1)}\Big )^k \Bigg ]. \end{aligned}$$

Invoking the definitions of \(\lambda _1(z)\) and \(\lambda _2(z)\) in Eq. (25) results in

$$\begin{aligned} D_{A,n}(z)&= \Bigg (\frac{1}{2}\Bigg )^n\frac{-z}{\sqrt{1+4\sigma (1-\sigma )(z^2-1)}}\\&\quad \,\times \,\left[ \left( \frac{1-2\sigma }{2}-(1-\sigma )z- \frac{\sqrt{1+4\sigma (1-\sigma )(z^2-1)}}{2}\right) \right. \\&\quad \times \,\sum \limits _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \Big (\sqrt{1+4\sigma (1-\sigma )(z^2-1)}\Big )^k\\&\quad -\,\left( \frac{1-2\sigma }{2}-(1-\sigma )z+\frac{\sqrt{1+4 \sigma (1-\sigma )(z^2-1)}}{2}\right) \\&\quad \times \, \left. \sum \limits _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \Big (-\sqrt{1+4\sigma (1-\sigma )(z^2-1)}\Big )^k \right] . \end{aligned}$$

Rearranging of the summations leads to

$$\begin{aligned} D_{A,n}(z)&= \Bigg (\frac{1}{2}\Bigg )^n\frac{-z}{\sqrt{\cdots }} \Bigg [\Big (\frac{1-2\sigma }{2}-(1-\sigma )z\Big ) \sum \limits _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \Big (\sqrt{\cdots }\Big )^k-\Big (-\sqrt{\cdots }\Big )^k \\&\quad -\,\frac{\sqrt{\cdots }}{2} \sum \limits _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \Big (\sqrt{\cdots }\Big )^k+\Big (-\sqrt{\cdots }\Big )^k\Bigg ], \end{aligned}$$

where we abbreviated \(\sqrt{1+4\sigma (1-\sigma )(z^2-1)}\) as \(\sqrt{\cdots }\). We clearly see that in the first summation only the terms when k is odd are non-zero and in the second summation only the even values of k remain. As a result we can write \(D_{A,n}(z)\) as

and the analogue equation for a class B customer at the head of the queue is

We clearly see that both these functions are polynomials of degree \(n+1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baetens, J., Steyaert, B., Claeys, D. et al. Delay analysis of a two-class batch-service queue with class-dependent variable server capacity. Math Meth Oper Res 88, 37–57 (2018). https://doi.org/10.1007/s00186-017-0627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-017-0627-8

Keywords

Navigation