Skip to main content
Log in

Inexact proximal Newton methods for self-concordant functions

  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We analyze the proximal Newton method for minimizing a sum of a self-concordant function and a convex function with an inexpensive proximal operator. We present new results on the global and local convergence of the method when inexact search directions are used. The method is illustrated with an application to L1-regularized covariance selection, in which prior constraints on the sparsity pattern of the inverse covariance matrix are imposed. In the numerical experiments the proximal Newton steps are computed by an accelerated proximal gradient method, and multifrontal algorithms for positive definite matrices with chordal sparsity patterns are used to evaluate gradients and matrix-vector products with the Hessian of the smooth component of the objective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen MS, Vandenberghe, L (2015) CHOMPACK: a python package for chordal matrix computations, Version 2.2.1. cvxopt.github.io/chompack

  • Andersen MS, Dahl J, Vandenberghe L (2013) Logarithmic barriers for sparse matrix cones. Optim Methods Softw 28(3):396–423

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen M, Dahl J, Vandenberghe L (2015) CVXOPT: a python package for convex optimization. www.cvxopt.org

  • Becker SR, Candès EJ, Grant MC (2011) Templates for convex cone problems with applications to sparse signal recovery. Math Program Comput 3(3):165–218

    Article  MathSciNet  MATH  Google Scholar 

  • Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsekas DP (2009) Convex optimization theory. Athena Scientific, Belmont

    MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Byrd RH, Nocedal J, Oztoprak F (2016) An inexact successive quadratic approximation method for L-1 regularized optimization. Math Program 157(2):375–396

  • Davis TA, Hu Y (2011) The University of Florida sparse matrix collection. ACM Trans Math Softw 38:1–25

    MathSciNet  Google Scholar 

  • Dembo RS, Eisenstat SC, Steihaug T (1982) Inexact Newton methods. SIAM J Numer Anal 19(2):400–408

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster AP (1972) Covariance selection. Biometrics 28:157–175

    Article  Google Scholar 

  • Eisenstat SC, Walker HF (1996) Choosing the forcing terms in an inexact Newton method. SIAM J Sci Comput 17(1):16–32

    Article  MathSciNet  MATH  Google Scholar 

  • Hastie T, Tibshirani R, Wainwright M (2015) Statistical learning with sparsity. The lasso and generalizations. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms I, volume 305 of Grundlehren der mathematischen Wissenschaften. Springer, New York

    Book  Google Scholar 

  • Hsieh C-J, Sustik MA, Dhillon IS, Ravikumar P (2011) Sparse inverse covariance matrix estimation using quadratic approximation. Adv Neural Inf Process (NIPS) 24:2330–2338

    Google Scholar 

  • Kyrillidis A, Karimi-Mahabadi R, Tran-Dinh Q, Cevher V (2014) Scalable sparse covariance estimation via self-concordance. In: Proceedings of the 28th AAAI conference on artificial intelligence, pp 1946–1952

  • Lee JD, Sun Y, Saunders MA (2014) Proximal Newton-type methods for minimizing composite functions. SIAM J Optim 24(3):1420–1443

    Article  MathSciNet  MATH  Google Scholar 

  • Moreau JJ (1965) Proximité et dualité dans un espace hilbertien. Bull Math Soc Fr 93:273–299

    Article  MATH  Google Scholar 

  • Nesterov Y (2004) Introductory lectures on convex optimization. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Nesterov Y (2012) Towards non-symmetric conic optimization. Optim Methods Softw 27(4–5):893–917

    Article  MathSciNet  MATH  Google Scholar 

  • Nesterov Y, Nemirovskii A (1994) Interior-point polynomial methods in convex programming, volume 13 of studies in applied mathematics. SIAM, Philadelphia

    MATH  Google Scholar 

  • Olsen PA, Oztoprak F, Nocedal J, Rennie SJ (2012) Newton-like methods for sparse inverse covariance estimation. Adv Neural Inf Process (NIPS) 25:764–772

    Google Scholar 

  • Renegar J (2001) A mathematical view of interior-point methods in convex optimization. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Scheinberg K, Goldfarb D, Bai X (2014) Fast first-order methods for composite convex optimization with backtracking. Found Comput Math 14:389–417

    Article  MathSciNet  MATH  Google Scholar 

  • Scheinberg K, Ma S (2012) Optimization methods for sparse inverse covariance selection. In: Sra S, Nowozin S, Wright SJ (eds) Optimization for machine learning. MIT Press, Cambridge, pp 455–477

    Google Scholar 

  • Scheinberg K, Tang X (2013) Complexity of inexact proximal Newton methods. Technical Report 13T-02-R1, COR@L. Lehigh University, 2013

  • Tran-Dinh Q, Kyrillidis A, Cevher V (2014) An inexact proximal path-following algorithm for constrained convex optimization. SIAM J Optim 24(4):1718–1745

    Article  MathSciNet  MATH  Google Scholar 

  • Tran-Dinh Q, Kyrillidis A, Cevher V (2015) Composite self-concordant minimization. J Mach Learn Res 16:371–416

    MathSciNet  MATH  Google Scholar 

  • Vandenberghe L, Andersen MS (2014) Chordal graphs and semidefinite optimization. Found Trends Optim 1(4):241–433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchao Li.

Additional information

This work was supported by National Science Foundation Grants 1128817 and 1509789.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Andersen, M.S. & Vandenberghe, L. Inexact proximal Newton methods for self-concordant functions. Math Meth Oper Res 85, 19–41 (2017). https://doi.org/10.1007/s00186-016-0566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-016-0566-9

Keywords

Navigation