Skip to main content
Log in

New results on quaternary codes and their Gray map images for constructing uniform designs

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The research of developing efficient methodologies for constructing optimal experimental designs has been very active in the last decade. Uniform design is one of the most popular approaches, carried out by filling up experimental points in a determinately uniform fashion. Applications of coding theory in experimental design are interesting and promising. Quaternary codes and their binary Gray map images attracted much attention from those researching design of experiments in recent years. The present paper aims at exploring new results for constructing uniform designs based on quaternary codes and their binary Gray map images. This paper studies the optimality of quaternary designs and their two and three binary Gray map image designs in terms of the uniformity criteria measured by: the Lee, wrap-around, symmetric, centered and mixture discrepancies. Strong relationships between quaternary designs and their two and three binary Gray map image designs are obtained, which can be used for efficiently constructing two-level designs from four-level designs and vice versa. The significance of this work is evaluated by comparing our results to the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Box GEP, Tyssedal J (1996) Projective properties of certain orthogonal arrays. Biometrika 83:950–955

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee K, Ou Z, Phoa FKH, Qin H (2017) Uniform four-level designs from two-level designs: a new look. Stat Sin 27:171–186

    MathSciNet  MATH  Google Scholar 

  • Chatterjee K, Li Z, Qin H (2012) Some new lower bounds to centered and wrap-round \(L_{2}\)-discrepancies. Stat Probab Lett 82:1367–1373

    Article  MATH  Google Scholar 

  • Deng LY, Tang B (1999) Generalized resolution and minimum aberration criteria for Plackett–Burman and other nonregular factorial designs. Stat Sin 9:1071–1082

    MathSciNet  MATH  Google Scholar 

  • Elsawah AM (2017a) A closer look at de-aliasing effects using an efficient foldover technique. Statistics 51(3):532–557

    Article  MathSciNet  MATH  Google Scholar 

  • Elsawah AM (2017b) Constructing optimal router bit life sequential experimental designs: new results with a case study. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2017.1397164.

  • Elsawah AM, Qin H (2014) New lower bound for centered \(L_2\)-discrepancy of four-level \(U\)-type designs. Stat Probab Lett 93:65–71

    Article  MATH  Google Scholar 

  • Elsawah AM, Qin H (2015a) Lower bound of centered \(L_2\)-discrepancy for mixed two and three levels U-type designs. J Stat Plan Inference 161:1–11

    Article  MATH  Google Scholar 

  • Elsawah AM, Qin H (2015b) Mixture discrepancy on symmetric balanced designs. Stat Probab Lett 104:123–132

    Article  MathSciNet  MATH  Google Scholar 

  • Elsawah AM, Qin H (2015c) A new strategy for optimal foldover two-level designs. Stat Probab Lett 103:116–126

    Article  MathSciNet  MATH  Google Scholar 

  • Elsawah AM, Qin H (2016) Asymmetric uniform designs based on mixture discrepancy. J Appl Stat 43(12):2280–2294

    Article  MathSciNet  Google Scholar 

  • Elsawah AM, Qin H (2017) Optimum mechanism for breaking the confounding effects of mixed-level designs. Comput Stat 32(2):781–802

    Article  MathSciNet  MATH  Google Scholar 

  • Fang KT (1980) The uniform designs: application of number-theoretic methods in experimental design. Acta Math Appl Sin 3:363–372

    Google Scholar 

  • Fang KT, Li RZ, Sudjianto A (2006a) Design and modeling for computer experiments. Chapman and Hall/CRC, New York

    MATH  Google Scholar 

  • Fang KT, Maringer D, Tang Y, Winker P (2006b) Lower bounds and stochastic optimization algorithms for uniform designs with three or four levels. Math Comput 75:859–878

    Article  MathSciNet  MATH  Google Scholar 

  • Fang KT, Tang Y, Yin J (2005) Lower bounds for the wrap-around \(L_2\)- discrepancy of symmetrical uniform designs. J Complex 21:757–771

    Article  MATH  Google Scholar 

  • Fang KT, Mukerjee R (2000) A connection between uniformity and aberration in regular fractions of two-level factorials. Biometrika 87:173–198

    Article  MathSciNet  MATH  Google Scholar 

  • Fang KT, Lu X, Winker P (2003) Lower bounds for centered and wrap-around \(L_2\)-discrepancies and construction of uniform designs by threshold accepting. J Complex 19:692–711

    Article  MATH  Google Scholar 

  • Hickernell FJ (1998a) A generalized discrepancy and quadrature error bound. Math Comput 67:299–322

    Article  MathSciNet  MATH  Google Scholar 

  • Hickernell FJ (1998b) Lattice rules: how well do they measure up? In: Hellekalek P, Larcher G (eds) Random and quasi-random point sets. Lecture Notes in Statistics, vol 138. Springer, New York, pp 109–166

  • Jiang B, Ai M (2014) Construction of uniform designs without replications. J Complex 30:98–110

    Article  MathSciNet  MATH  Google Scholar 

  • Mukerjee R, Wu CFJ (2006) A modern theory of factorial designs. Springer, New York

    MATH  Google Scholar 

  • Phoa FKH (2012) A code arithmetic approach for quaternary code designs and its application to (1/64)th-fraction. Ann Stat 40:3161–3175

    Article  MathSciNet  MATH  Google Scholar 

  • Phoa FKH, Mukerjee R, Xu H (2012) One-eighth- and one-sixteenth-fraction quaternary code designs with high resolution. J Stat Plan Inference 142:1073–1080

    Article  MathSciNet  MATH  Google Scholar 

  • Phoa FKH, Xu H (2009) Quarter-fraction factorial designs constructed via quaternary codes. Ann Stat 37:2561–2581

    Article  MathSciNet  MATH  Google Scholar 

  • Qin H, Ai M (2007) A note on connection between uniformity and generalized minimum aberration. Stat Pap 48:491–502

    Article  MathSciNet  MATH  Google Scholar 

  • Tang B, Deng LY (1999) Minimum \(G_2\)-aberration for nonregular fractional factorial designs. Ann Stat 27:1914–1926

    Article  MATH  Google Scholar 

  • Wang Y, Fang KT (1981) A note on uniform distribution and experimental design. Chin Sci Bull 26:485–489

    MathSciNet  MATH  Google Scholar 

  • Xu H, Phoa FKH, Wong WK (2009) Recent developments in nonregular fractional factorial designs. Stat Surv 3:18–46

    Article  MathSciNet  MATH  Google Scholar 

  • Xu H, Wong A (2007) Two-level nonregular designs from quaternary linear codes. Stat Sin 17:1191–1213

    MathSciNet  MATH  Google Scholar 

  • Zhang RC, Phoa FKH, Mukerjee R, Xu H (2011) A trigonometric approach to quaternary code designs with application to one-eighth and one-sixteenth fractions. Ann Stat 39:931–955

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou YD, Ning JH, Song XB (2008) Lee discrepancy and its applications in experimental designs. Stat Probab Lett 78:1933–1942

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou YD, Fang KF, Ning JH (2013) Mixture discrepancy for quasi-random point sets. J Complex 29:283–301

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author greatly appreciate helpful suggestions of the two referees, the associate editor and the editor of chief Prof. Hajo Holzmann that significantly improved the paper. This work was partially supported by the UIC Grant (Nos. R201409 and R201712) and the Zhuhai Premier Discipline Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Elsawah.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix

Appendix

Proof of Theorem 1

The proof is obvious by the same technique as that in Elsawah and Qin (2015a, b). \(\square \)

Proof of Theorem 2

For any quaternary design \(\mathcal {U}_q\in \mathbb {U}(n; 4^m),\) let \(\beta _{ij},~\alpha _{ij},~\kappa _{ij},~\rho _{ij}, \ell _{ij}\) and \(\gamma _{ij}\) as given in Theorem 1. Then, we have

(a):

\(\beta _{ij}+\alpha _{ij}+\ell _{ij}+\gamma _{ij}+\kappa _{ij}+\rho _{ij}=m,\)

(b):

\(\sum _{i=1}^{n}\sum _{j\ne i}^{n}\beta _{ij}=\sum _{i=1}^{n}\sum _{j\ne i}^{n}\alpha _{ij}=\frac{1}{8}mn(n-4),\)

(c):

\(\sum _{i=1}^{n}\beta _{ii}=\sum _{i=1}^{n}\alpha _{ii}=\frac{1}{2}mn,~\beta _{ii}+\alpha _{ii}=m,~\ell _{ii}=\gamma _{ii}=\kappa _{ii}=\rho _{ii}=0,\)

(d):

\(\sum _{i=1}^{n}\sum _{j\ne i}^{n}\ell _{ij}=\sum _{i=1}^{n}\sum _{j\ne i}^{n}\gamma _{ij}=2\sum _{i=1}^{n}\sum _{j\ne i}^{n}\kappa _{ij}=2\sum _{i=1}^{n}\sum _{j\ne i}^{n}\rho _{ij}=\frac{1}{4}mn^2.\)

Thus, we can rewrite the analytical expressions of the uniformity criteria in Theorem 1 as follows

Table 12 Distributions of \(\zeta _{l},~\zeta _{w},~\zeta _{c},~\zeta _{m},~\zeta ^*_{c}\) and \(\zeta ^*_{m}\)-values for \(\mathcal {U}_q\in \mathbb {U}(n; 4^m)\)
$$\begin{aligned}{}[{\mathcal {LD}}(\mathcal {U}_q)]^2 =&-\left( \frac{3}{4}\right) ^{m}+\frac{1}{n}+\frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1,i\ne j}^{n}\left( \frac{3}{4}\right) ^{\rho _{ij}+\kappa _{ij}+\ell _{ij}}\left( \frac{1}{2}\right) ^{\gamma _{ij}}. \end{aligned}$$
(7.1)
$$\begin{aligned}{}[{\mathcal {WD}}(\mathcal {U}_q)]^2=&-\left( \frac{4}{3}\right) ^{m}+\frac{1}{n}\left( \frac{3}{2}\right) ^{m}+\frac{1}{n^{2}}\left( \frac{5}{4}\right) ^{m}\sum _{i=1}^{n}\sum _{j=1,i\ne j}^{n}\left( \frac{6}{5}\right) ^{\beta _{ij}+\alpha _{ij}}\left( \frac{21}{20}\right) ^{\rho _{ij}+\kappa _{ij}+\ell _{ij}}. \end{aligned}$$
(7.2)
$$\begin{aligned}{}[{\mathcal {CD}}(\mathcal {U}_q)]^2=&\left( \frac{13}{12}\right) ^{m}-\frac{2}{n}\sum _{i=1}^{n}\left( \frac{143}{128}\right) ^{\beta _{ii}}\left( \frac{135}{128}\right) ^{\alpha _{ii}}+\frac{1}{n^{2}}\left( \frac{9}{8}\right) ^{m}\sum _{i=1}^{n}\left( \frac{11}{9}\right) ^{\beta _{ii}}\nonumber \\&+\frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1,i\ne j}^{n}\left( \frac{11}{8}\right) ^{\beta _{ij}}\left( \frac{9}{8}\right) ^{\alpha _{ij}+\ell _{ij}}. \end{aligned}$$
(7.3)
$$\begin{aligned}{}[{\mathcal {MD}}(\mathcal {U}_q)]^2 =&\left( \frac{19}{12}\right) ^{m}-\frac{2}{n}\sum _{i=1}^{n}\left( \frac{1181}{768}\right) ^{\beta _{ii}}\left( \frac{1253}{768}\right) ^{\alpha _{ii}}+\frac{1}{n^{2}}\left( \frac{27}{16}\right) ^{m}\sum _{i=1}^{n}\left( \frac{29}{27}\right) ^{\alpha _{ii}}\nonumber \\&+\frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1,i\ne j}^{n}\left( \frac{53}{32}\right) ^{\kappa _{ij}}\left( \frac{45}{32}\right) ^{\rho _{ij}}\left( \frac{3}{2}\right) ^{\gamma _{ij}}\left( \frac{51}{32}\right) ^{\ell _{ij}}\left( \frac{27}{16}\right) ^{\beta _{ij}}\left( \frac{29}{16}\right) ^{\alpha _{ij}}. \end{aligned}$$
(7.4)

Define \(\zeta _{l}=1-\min \left\{ \frac{|x_{ik}-x_{jk}|}{4},1-\frac{|x_{ik}-x_{jk}|}{4}\right\} ,\) \(\zeta _{w}=\frac{3}{2}-|y_{ik}-y_{jk}|(1-|y_{ik}-y_{jk}|), ~\zeta _{c}=1+\frac{1}{2}|y_{ik}-\frac{1}{2}|+\frac{1}{2}|y_{jk}-\frac{1}{2}|-\frac{1}{2}|y_{ik}-y_{jk}|,~\zeta _{m}=\frac{15}{8}-\frac{1}{4}|y_{ik}-\frac{1}{2}|-\frac{1}{4}|y_{jk}-\frac{1}{2}|-\frac{3}{4}|y_{ik}-y_{jk}|+\frac{1}{2}|y_{ik}-y_{jk}|^2,~ \zeta ^*_{c}=1+\frac{1}{2}|y_{ik}-\frac{1}{2}|-\frac{1}{2}|y_{ik}-\frac{1}{2}|^{2}\) and \(\zeta ^*_{m}=\frac{5}{3}-\frac{1}{4}|y_{ik}-\frac{1}{2}|-\frac{1}{4}|y_{ik}-\frac{1}{2}|^{2}.\) Table 12 gives the distributions of \(\zeta _{l},~\zeta _{w},~\zeta _{c},~\zeta _{m},~\zeta ^*_{c}\) and \(\zeta ^*_{m},\) which are very useful to find the lower bounds of these discrepancies for quaternary designs. Thus, the expressions of the lower bounds of the uniformity criteria are straightforward according to the analytical expressions (7.1)–(7.4), the relations (a)–(d), Table 12 and based on the following two inequalities. Suppose \(\sum _{i=1}^{n}x_{i} = c,~\theta =n(\lfloor \frac{c}{n}\rfloor +1)-c,~x_{i}\)’s are nonnegative integers, then for any positive \(\mu ,\) we have \(\sum _{i=1}^{n}\mu ^{x_{i}}\ge \mu ^{\lfloor \frac{c}{n}\rfloor }(\theta +(n-\theta )\mu )\) (cf. Lemma 4 in Elsawah and Qin 2015c). Suppose \(\sum _{i=1}^{n}z_{i} = c_1,~\sum _{i=1}^{n}y_{i} = c_2,\) for \(i=1,2,\ldots ,n,\) where \(z_{i} ,~y_{i}\)’s are nonnegative integers and \(\alpha _s=n(\lfloor \frac{c_s}{n}\rfloor +1)-c_s,~s=1,2,\) then for any positive \(\mu _1\) and \(\mu _2,\) we have \(\sum _{i=1}^{n}\mu _1^{z_i}\mu _2^{y_i}\ge \left\{ \begin{array}{ll} (n-\alpha _1)e^{\chi _1}+(n-\alpha _2)e^{\chi _2}+(\alpha _1+\alpha _2-n)e^{\chi _3},~ \alpha _1+\alpha _1>n,\\ \alpha _2e^{\chi _1}+\alpha _1e^{\chi _2}+(n-\alpha _1-\alpha _2)e^{\chi _4},~ \alpha _1+\alpha _2\le n, \end{array} \right. \) where \(\chi _1=\varepsilon _1(\lfloor \frac{c_1}{n}\rfloor +1)+\varepsilon _2\lfloor \frac{c_2}{n}\rfloor ,~\chi _2=\varepsilon _1\lfloor \frac{c_1}{n}\rfloor +\varepsilon _2(\lfloor \frac{c_2}{n}\rfloor +1),~\chi _3=\varepsilon _1\lfloor \frac{c_1}{n}\rfloor +\varepsilon _2\lfloor \frac{c_2}{n}\rfloor ,~\chi _4=\varepsilon _1(\lfloor \frac{c_1}{n}\rfloor +1)+\varepsilon _2(\lfloor \frac{c_2}{n}\rfloor +1)\) and \((n-\alpha _1)\chi _1+(n-\alpha _2)\chi _2+(\alpha _1+\alpha _2-n)\chi _3=\alpha _2\chi _1+\alpha _1\chi _2+(n-\alpha _2-\alpha _1)\chi _4=\varepsilon _1c_1+\varepsilon _2c_2,~\varepsilon _1=\ln \mu _1\) and \(\varepsilon _2=\ln \mu _2\) (cf. Lemma 4 in Elsawah and Qin 2014). Utilizing the same technique as that in Elsawah and Qin (2015b) and Elsawah (2017a) with some algebra, we can complete the proof. \(\square \)

Table 13 Any pair of points \((x^q_{ik},x^q_{jk})\) in any quaternary design \(\mathcal {U}_{q}\in \mathbb {U}(n; 4^{m})\) and their two images \((x^{2bi}_{ik_1},x^{2bi}_{jk_1})\) and \((x^{2bi}_{ik_2},x^{2bi}_{jk_2})\) in the two binary image design \(\mathcal {U}_{2bi}\in \mathbb {U}(n; 2^{2m})\)

Proof of Theorem 3

The analytical expression \([{\mathcal {VD}^*}(\mathcal {U}_{2bi})]^2\) can be found in Theorem 1 in Elsawah and Qin (2015c). The proof of the analytical expression \([{\mathcal {VD}^{**}}(\mathcal {U}_{2bi})]^2\) is from Lemma 1 in Jiang and Ai (2014) and the discussion in Sect. 3 in Chatterjee et al. (2017) with some algebra, where we extend the existing results from two discrepancies, the \(\mathcal {CD}\) and \(\mathcal {WD},\) to all the five discrepancies, the \(\mathcal {LD},~\mathcal {WD},~\mathcal {SD},~\mathcal {CD}\) and \(\mathcal {MD},\) as well as we rewrite the analytical expressions of all these discrepancies as only one analytical expression \([{\mathcal {VD}^{**}}(\mathcal {U}_{2bi})]^2.\) Note that, for this case we have

$$\begin{aligned} aJ_2+a(b-1)I_2=\left( \begin{array}{cc} ab &{} a \\ a &{} ab \\ \end{array} \right) . \end{aligned}$$

However, the proof of the analytical expression \([{\mathcal {VD}^{***}}(\mathcal {U}_{2bi})]^2\) is given as follows. Under the two binary Gray map image principle, any pair of points \((x^q_{ik},x^q_{jk})\) in any quaternary design \(\mathcal {U}_{q}\in \mathbb {U}(n; 4^{m})\) will be replaced by the two pairs \((x^{2bi}_{ik_1},x^{2bi}_{jk_1})\) and \((x^{2bi}_{ik_2},x^{2bi}_{jk_2})\) in the two binary Gray map image design \(f_2(\mathcal {U}_{q})=\mathcal {U}_{2bi}\in \mathbb {U}(n; 2^{2m})\) as given in Table 13. From Table 13, we can show that

$$\begin{aligned}&\mathcal {N}\left\{ (i,j):(x^{2bi}_{ik},x^{2bi}_{jk})=\left( \frac{3}{4},\frac{3}{4}\right) \right\} =\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{3}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{5}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{3}{8}\right) \right\} \\&\quad +\,2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{5}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{7}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{5}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{7}{8}\right) \right\} .\\&\mathcal {N}\left\{ (i,j):(x^{2bi}_{ik},x^{2bi}_{jk})=\left( \frac{1}{4},\frac{1}{4}\right) \right\} =2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{1}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{3}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{7}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{1}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{3}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{1}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{7}{8}\right) \right\} .\\&\mathcal {N}\left\{ (i,j):(x^{2bi}_{ik},x^{2bi}_{jk})=\left( \frac{3}{4},\frac{1}{4}\right) \right\} =\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{1}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{7}{8}\right) \right\} +2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{1}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{3}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{7}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{1}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{3}{8}\right) \right\} .\\&\mathcal {N}\left\{ (i,j):(x^{2bi}_{ik},x^{2bi}_{jk})=\left( \frac{1}{4},\frac{3}{4}\right) \right\} =\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{3}{8}\right) \right\} \\&\quad +\,2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{5}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{7}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{5}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{7}{8}\right) \right\} \\&\quad +\,\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{3}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{5}{8}\right) \right\} . \end{aligned}$$

Then, we get

$$\begin{aligned} h_{ij}=\mathcal {N}\left\{ (i,j):(x^{2bi}_{ik},x^{2bi}_{jk})\in \left\{ \left( \frac{1}{4},\frac{3}{4}\right) ,\left( \frac{3}{4},\frac{1}{4}\right) \right\} \right\} =2\gamma _{ij}+\rho _{ij}+\kappa _{ij}+\ell _{ij} \end{aligned}$$

and

$$\begin{aligned} 2m-h_{ij}= & {} \mathcal {N}\left\{ (i,j):(x^{2bi}_{ik},x^{2bi}_{jk})\in \left\{ \left( \frac{1}{4},\frac{1}{4}\right) ,\left( \frac{3}{4},\frac{3}{4}\right) \right\} \right\} \\= & {} 2\beta _{ij}+2\alpha _{ij}+\rho _{ij}+\kappa _{ij}+\ell _{ij}. \end{aligned}$$

Thus, from the analytical expression \([{\mathcal {VD}^*}(\mathcal {U}_{2bi})]^2\) we get

$$\begin{aligned}{}[{\mathcal {VD}}(\mathcal {U}_{2bi})]^2&=\Delta (2m)+\frac{1}{n^{2}}\left( \sum _{i=1}^{n}\sum _{j=1}^{n}(ab)^{2m-h_{ij}}a^{h_{ij}}\right) \nonumber \\&=\Delta (2m)+\frac{1}{n^2}\left( \sum _{i=1}^{n}\sum _{j=1}^{n}(ab)^{2\beta _{ij}+2\alpha _{ij}+\rho _{ij}+\kappa _{ij}+\ell _{ij}}a^{2\gamma _{ij}+\rho _{ij}+\kappa _{ij}+\ell _{ij}}\right) \nonumber \\&=\Delta (2m)+\frac{1}{n^2}\left( \sum _{i=1}^{n}\sum _{j=1}^{n}\left( {a^2}{b^2}\right) ^{\beta _{ij}+\alpha _{ij}}\left( {a^2}{b}\right) ^{\rho _{ij}+\kappa _{ij}+\ell _{ij}}(a^2)^{\gamma _{ij}}\right) . \end{aligned}$$

\(\square \)

Proof of Theorem 4

For any two binary Gray map image design \(\mathcal {U}_{2bi}\in \mathbb {U}(n;2^{2m}),\) let the Hamming distance \(h_{ij}=\mathcal {N}\left\{ (i,j):(x_{ik},x_{jk})\in \left\{ \left( \frac{1}{4},\frac{3}{4}\right) ,\left( \frac{3}{4},\frac{1}{4}\right) \right\} \right\} .\) Then, we have

$$\begin{aligned} h_{ii}=0~\text{ and }~\sum _{i=1}^{n}\sum _{j\ne i}^{n}{h_{ij}}=nm(n-2). \end{aligned}$$
(7.5)

The lower bound \({\mathcal {LBV}^*_{2bi}}\) is from the analytical expression \([{\mathcal {VD}^{*}}(\mathcal {U}_{2bi})]^2\) in Theorem 3, the relation (7.5) and Lemma 4 in Elsawah and Qin (2015c). The proof of the lower bound \({\mathcal {LBV}^{**}_{2bi}}\) is from the new analytical expression \([{\mathcal {VD}^{**}}(\mathcal {U}_{2bi})]^2\) in Theorem 3, the proof of Lemma 3 in Chatterjee et al. (2017) and Lemma 2 in Chatterjee et al. (2012) with some algebra, where we extend the existing results from two discrepancies, the \(\mathcal {CD}\) and \(\mathcal {WD},\) to all the five discrepancies, the \(\mathcal {LD},~\mathcal {WD},~\mathcal {SD},~\mathcal {CD}\) and \(\mathcal {MD},\) as well as we express the lower bounds of all these discrepancies as only one analytical expression \([{\mathcal {LBV}^{**}}(\mathcal {U}_{2bi})]^2.\) However, the proof of the lower bound \({\mathcal {LBV}^{***}_{2bi}}\) is given as follows. From the relations (a) and (c) in the proof of Theorem 2, we can rewrite the analytical formulas of different discrepancies in \([{\mathcal {VD}^{***}}(\mathcal {U}_{2bi})]^2\) as follows

$$\begin{aligned}{}[{\mathcal {VD}^{***}}(\mathcal {U}_{2bi})]^2= & {} \Delta (2m)+\frac{1}{n^2}\left( \sum _{i=1}^{n}\sum _{j=1}^{n}\left( {a^2}{b^2}\right) ^{\beta _{ij}+\alpha _{ij}}\left( {a^2}{b}\right) ^{\rho _{ij}+\kappa _{ij}+\ell _{ij}}(a^2)^{\gamma _{ij}}\right) \nonumber \\= & {} \Delta (2m)+\frac{1}{n}{{a}^{2m}{b}^{2m}}\nonumber \\&+\,\frac{1}{n^2}\left( \sum _{i=1}^{n}\sum _{j\ne i}^{n}\left( {a^2}{b^2}\right) ^{\beta _{ij}+\alpha _{ij}}\left( {a^2}{b}\right) ^{\rho _{ij}+\kappa _{ij}+\ell _{ij}}(a^2)^{m-\beta _{ij}-\alpha _{ij}-\rho _{ij}-\kappa _{ij}-\ell _{ij}}\right) \nonumber \\= & {} \Delta (2m)+\frac{{a}^{2m}{b}^{2m}}{n}+\frac{1}{n^2}a^{2m}\left( \sum _{i=1}^{n}\sum _{j\ne i}^{n}({b^2})^{\beta _{ij}+\alpha _{ij}}({b})^{\rho _{ij}+\kappa _{ij}+\ell _{ij}}\right) . \end{aligned}$$
(7.6)

From the relations (b) and (d) in the proof of Theorem 2, we get

$$\begin{aligned} \sum _{i=1}^{n}\sum _{j\ne i}^{n}(\rho _{ij}+\kappa _{ij}+\ell _{ij})=\frac{1}{2}mn^2\quad \text{ and }\quad \sum _{i=1}^{n}\sum _{j\ne i}^{n}(\beta _{ij}+\alpha _{ij})=\frac{1}{4}mn(n-4).\nonumber \\ \end{aligned}$$
(7.7)

The proof now is obvious from (7.6) and (7.7) by using Lemma 4 in Elsawah and Qin (2014). \(\square \)

Proof of Theorem 5

The analytical expression \([{\mathcal {VD}^*}(\mathcal {U}_{3bi})]^2\) can be found in Theorem 1 in Elsawah and Qin (2015c). The proof of the analytical expression \([{\mathcal {VD}^{**}}(\mathcal {U}_{3bi})]^2\) is from Lemma 1 in Jiang and Ai (2014) and the discussion in Sect. 4 in Chatterjee et al. (2017) with some algebra, where we extend the existing results from two discrepancies, the \(\mathcal {CD}\) and \(\mathcal {WD},\) to all the five discrepancies, the \(\mathcal {LD},~\mathcal {WD},~\mathcal {SD},~\mathcal {CD}\) and \(\mathcal {MD},\) as well as we rewrite the analytical expressions of all these discrepancies as only one analytical expression \([{\mathcal {VD}^{**}}(\mathcal {U}_{3bi})]^2.\) Note that, for this case we have

$$\begin{aligned} a^3bJ_4+a^3b(b^2-1)I_4=\left( \begin{array}{cccc} a^3b^3 &{} a^3b&{} a^3b&{} a^3b \\ a^3b &{} a^3b^3&{} a^3b&{} a^3b \\ a^3b&{} a^3b&{}a^3b^3&{} a^3b\\ a^3b&{} a^3b&{} a^3b&{}a^3b^3\\ \end{array} \right) . \end{aligned}$$

However, the proof of the analytical expression \([{\mathcal {VD}^{***}}(\mathcal {U}_{3bi})]^2\) is given as follows. Under the three binary Gray map image principle, any pair of points \((x^q_{ik},x^q_{jk})\) in any quaternary design \(\mathcal {U}_{q}\in \mathbb {U}(n; 4^{m})\) will be replaced by the three pairs \((x^{3bi}_{ik_1},x^{3bi}_{jk_1})\), \((x^{3bi}_{ik_2},x^{3bi}_{jk_2})\) and \((x^{3bi}_{ik_3},x^{3bi}_{jk_3})\) in the three binary Gray map image design \(f_3(\mathcal {U}_{q})=\mathcal {U}_{3bi}\in \mathbb {U}(n; 2^{3m})\) as given in Table 14. From Table 14, we can show that

$$\begin{aligned}&\mathcal {N}\left\{ (i,j):(x^{3bi}_{ik},x^{3bi}_{jk})=\left( \frac{1}{4},\frac{1}{4}\right) \right\} =3\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{1}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{3}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{5}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{7}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{1}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{3}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{1}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{5}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{1}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{7}{8}\right) \right\} .\\&\mathcal {N}\left\{ (i,j):(x^{3bi}_{ik},x^{3bi}_{jk})=\left( \frac{3}{4},\frac{3}{4}\right) \right\} =2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{3}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{5}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{7}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{3}{8}\right) \right\} +2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{5}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{7}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{3}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{5}{8}\right) \right\} +2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{7}{8}\right) \right\} .\\&\mathcal {N}\left\{ (i,j):(x^{3bi}_{ik},x^{3bi}_{jk})=\left( \frac{1}{4},\frac{3}{4}\right) \right\} =2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{3}{8}\right) \right\} \\&\quad +2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{5}{8}\right) \right\} +2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{1}{8},\frac{7}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{5}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{7}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{3}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{3}{7}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{3}{7}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{5}{7}\right) \right\} .\\&\mathcal {N}\left\{ (i,j):(x^{3bi}_{ik},x^{3bi}_{jk})=\left( \frac{3}{4},\frac{1}{4}\right) \right\} =2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{1}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{5}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{3}{8},\frac{7}{8}\right) \right\} \\&\quad +2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{1}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{3}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{5}{8},\frac{7}{8}\right) \right\} +2\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{1}{8}\right) \right\} \\&\quad +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{3}{8}\right) \right\} +\mathcal {N}\left\{ (i,j):(x^{q}_{ik},x^{q}_{jk})=\left( \frac{7}{8},\frac{5}{8}\right) \right\} . \end{aligned}$$
Table 14 Any pair of points \((x^q_{ik},x^q_{jk})\) in any quaternary design \(\mathcal {U}_{q}\in \mathbb {U}(n; 4^{m})\) and their three images \((x^{3bi}_{ik_1},x^{3bi}_{jk_1})\), \((x^{3bi}_{ik_2},x^{3bi}_{jk_2})\) and \((x^{3bi}_{ik_3},x^{3bi}_{jk_3})\) in the three binary image design \(\mathcal {U}_{3bi}\in \mathbb {U}(n; 2^{3m}).\)

Then, we get

$$\begin{aligned} h_{ij}=\mathcal {N}\left\{ (i,j):(x^{3bi}_{ik},x^{3bi}_{jk})\in \left\{ \left( \frac{1}{4},\frac{3}{4}\right) ,\left( \frac{3}{4},\frac{1}{4}\right) \right\} \right\} =2\gamma _{ij}+2\rho _{ij}+2\kappa _{ij}+2\ell _{ij} \end{aligned}$$

and

$$\begin{aligned}&3m-h_{ij}=\mathcal {N}\left\{ (i,j):(x^{3bi}_{ik},x^{3bi}_{jk})\in \left\{ \left( \frac{1}{4},\frac{1}{4}\right) ,\left( \frac{3}{4},\frac{3}{4}\right) \right\} \right\} \\&\quad =3\beta _{ij}+3\alpha _{ij}+\gamma _{ij}+\rho _{ij}+\kappa _{ij}+\ell _{ij}. \end{aligned}$$

Thus, from the analytical expression \([{\mathcal {VD}^*}(\mathcal {U}_{3bi})]^2\) we get

$$\begin{aligned}{}[{\mathcal {VD}}(\mathcal {U}_{3bi})]^2&=\Delta (3m)+\frac{1}{n^{2}}\left( \sum _{i=1}^{n}\sum _{j=1}^{n}(ab)^{3m-h_{ij}}a^{h_{ij}}\right) \\&=\Delta (3m)+\frac{1}{n^2}\left( \sum _{i=1}^{n}\sum _{j=1}^{n}(ab)^{3\beta _{ij}+3\alpha _{ij}+\gamma _{ij}+\rho _{ij}+\kappa _{ij}+\ell _{ij}}a^{2\gamma _{ij}+2\rho _{ij}+2\kappa _{ij}+2\ell _{ij}}\right) \nonumber \\&=\Delta (3m)+\frac{1}{n^2}\left( \sum _{i=1}^{n}\sum _{j=1}^{n}\left( {a^3}{b^3}\right) ^{\beta _{ij}+\alpha _{ij}}\left( {a^3}{b}\right) ^{\rho _{ij}+\kappa _{ij}+\ell _{ij}+\gamma _{ij}}\right) \nonumber \\&=\Delta (3m)+\frac{1}{n^2}{a^{3m}}{b^m}\left( \sum _{i=1}^{n}\sum _{j=1}^{n}(b^2)^{\beta _{ij}+\alpha _{ij}}\right) . \end{aligned}$$

\(\square \)

Proof of Theorem 6

For any three binary Gray map image design \(\mathcal {U}_{3bi}\in \mathbb {U}(n;2^{3m}),\) let the Hamming distance \(h_{ij}=\mathcal {N}\left\{ (i,j):(x_{ik},x_{jk})\in \left\{ \left( \frac{1}{4},\frac{3}{4}\right) ,\left( \frac{3}{4},\frac{1}{4}\right) \right\} \right\} .\) Then, we have

$$\begin{aligned} h_{ij}=0 \quad \text{ and } \quad \sum _{i=1}^{n}\sum _{j\ne i}^{n}{h_{ij}}=\frac{3}{2}nm(n-2). \end{aligned}$$
(7.8)

The lower bound \({\mathcal {LBV}^*_{3bi}}\) is from the analytical expression \([{\mathcal {VD}^{*}}(\mathcal {U}_{3bi})]^2\) in Theorem 5, the relation (7.8) and Lemma 4 in Elsawah and Qin (2015c). The proof of the lower bound \({\mathcal {LBV}^{**}_{3bi}}\) is from the new analytical expression \([{\mathcal {VD}^{**}}(\mathcal {U}_{3bi})]^2\) in Theorem 5, the proof of Lemma 5 in Chatterjee et al. (2017) and Lemma 2 in Chatterjee et al. (2012) with some algebra, where we extend the existing results from two discrepancies, the \(\mathcal {CD}\) and \(\mathcal {WD},\) to all the five discrepancies, the \(\mathcal {LD},~\mathcal {WD},~\mathcal {SD},~\mathcal {CD}\) and \(\mathcal {MD},\) as well as we express the lower bounds of all these discrepancies as only one analytical expression \([{\mathcal {LBV}^{**}}(\mathcal {U}_{3bi})]^2.\) However, the proof of the lower bound \({\mathcal {LBV}^{***}_{2bi}}\) is given as follows. From the relations (a) and (c) in the proof of Theorem 2, we can rewrite the analytical formulas of different discrepancies in \([{\mathcal {VD}^{***}}(\mathcal {U}_{3bi})]^2\) as follows

$$\begin{aligned}{}[{\mathcal {VD}^{***}}(\mathcal {U}_{3bi})]^2= & {} \Delta (3m)+\frac{1}{n^2}{a^{3m}}{b^m}\left( \sum _{i=1}^{n}\sum _{j=1}^{n}(b^2)^{\beta _{ij}+\alpha _{ij}}\right) \nonumber \\= & {} \Delta (3m)+\frac{1}{n}{{a}^{3m}{b}^{3m}}+\frac{1}{n^2}{a^{3m}}{b^m}\left( \sum _{i=1}^{n}\sum _{j\ne i}^{n}(b^2)^{\beta _{ij}+\alpha _{ij}}\right) .\nonumber \\ \end{aligned}$$
(7.9)

The proof now is obvious from (7.9) and (7.7) by using Lemma 4 in Elsawah and Qin (2015c). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsawah, A.M., Fang, KT. New results on quaternary codes and their Gray map images for constructing uniform designs. Metrika 81, 307–336 (2018). https://doi.org/10.1007/s00184-018-0644-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0644-5

Keywords

Mathematics Subject Classification

Navigation