Skip to main content
Log in

Estimating the shape parameter of a Pareto distribution under restrictions

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper estimation of the shape parameter of a Pareto distribution is considered under the a priori assumption that it is bounded below by a known constant. The loss function is scale invariant squared error. A class of minimax estimators is presented when the scale parameter of the distribution is known. In consequence, it has been shown that the generalized Bayes estimator with respect to the uniform prior on the truncated parameter space dominates the minimum risk equivariant estimator. By making use of a sequence of proper priors, we also show that this estimator is admissible for estimating the lower bounded shape parameter. A class of truncated linear estimators is studied as well. Some complete class results and a class of minimax estimators for the case of an unknown scale parameter are obtained. The corresponding generalized Bayes estimator is shown to be minimax in this case as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asrabadi BR (1990) Estimation in Pareto distribution. Metrika 37:199–205

    Article  MATH  MathSciNet  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer Science & Business Media, New York

    Book  MATH  Google Scholar 

  • Blyth CR (1951) On minimax statistical procedures and their admissibility. Ann Math Statist 22:22–42

    Article  MATH  MathSciNet  Google Scholar 

  • Brewster JF, Zidek JV (1974) Improving on equivariant estimators. Ann Statist 2:21–38

    Article  MATH  MathSciNet  Google Scholar 

  • Ghosh JK, Singh R (1970) Estimation of the reciprocal of scale parameter of a gamma distribution. Ann Inst Statist Math 22:51–55

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions. Wiley, New York

    MATH  Google Scholar 

  • Kaluszka M (1986) Admissible and minimax estimators of \(\lambda ^r\) in the gamma distribution with truncated parameter spaces. Metrika 33:363–375

    Article  MATH  MathSciNet  Google Scholar 

  • Katz MW (1961) Admissible and minimax estimates of parameters in truncated spaces. Ann Math Statist 32:136–142

    Article  MATH  MathSciNet  Google Scholar 

  • Kubokawa T (1994) A unified approach to improving equivariant estimators. Ann Statist 22:290–299

    Article  MATH  MathSciNet  Google Scholar 

  • Kubokawa T (2004) Minimaxity in estimation of restricted parameters. J Jpn Statist Soc 34:229–253

    Article  MATH  MathSciNet  Google Scholar 

  • Kubokawa T (2005) Estimation of bounded location and scale parameters. J Jpn Statist Soc 35:221–249

    Article  MathSciNet  Google Scholar 

  • Rytgaard M (1990) Estimation in the Pareto distribution. Astin Bull 20:201–216

    Article  Google Scholar 

  • Saksena SK, Johnson AM (1984) Best unbised estimators for the parameters of a two-parameter Pareto distribution. Metrika 31:77–83

    Article  MATH  MathSciNet  Google Scholar 

  • Scollnik DPM (2013) Comments on two papers concerning estimation of the parameters of the Pareto distribution in the prescence of outliers. Stat Methodol 13:1–11

    Article  MathSciNet  Google Scholar 

  • Sharma D (1977) Estimation of the reciprocal of the scale parameter in a shifted exponential distribution. Sankhya 39:203–205

    MATH  Google Scholar 

  • Singh DC, Prakash G, Singh P (2007) Shrinkage testimators for the shape parameter of Pareto distribution using linex loss function. Commun Statist Theor Meth 36:741–753

    Article  MATH  MathSciNet  Google Scholar 

  • Singh R (1972) Admissibe estimators of \(\lambda ^r\) in gamma distribution with quadratic loss. Trabajos De Estadistica 23:129–134

    Article  MATH  Google Scholar 

  • Stein C (1964) Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Ann Inst Statist Math 16:155–160

    Article  MATH  MathSciNet  Google Scholar 

  • Tripathi YM, Kumar S, Petropoulos C (2014) Improved estimators for parameters of a Pareto distribution with a restricted scale. Stat Methodol 18:1–13

    Article  MathSciNet  Google Scholar 

  • van Eeden C (1995) Minimax estimation of a lower-bounded scale parameter of a gamma distribution for scale-invariant squared-error loss. Cand J Statist 23:245–256

    Article  MATH  Google Scholar 

  • van Eeden C (2006) Restricted parameter space estimation problems: admissibility and minimaxity properties, lecture notes in statistics. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the referees for their valuable suggestions which have significantly improved the content and the presentation of the paper. Particularly comments from an anonymous referee is highly appreciated. They also thank the Editor for encouraging comments. The research work of Yogesh Mani Tripathi is partially supported by a grant \(SR/S4/MS: 785/12\) from the Department of Science and Technology, India, and the author gratefully acknowledges this financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Petropoulos.

Appendix

Appendix

Proof of Theorem 2.1

The risk difference the estimators \(\delta _{g}(T)\) and \(\delta _{BS}(T)\) is given by

$$\begin{aligned} \varDelta (\tau )= & {} R(\tau , \delta _{g}) - R(\tau , \delta _{BS})\\= & {} 2\int _{0}^{\infty }g'(y)\Big [\int _{y}^{\infty }\Big (\frac{\delta _{BS} (t)\,g(y)}{\tau }-1 \Big )\, \frac{\delta _{BS}(t)}{\tau } \, f(t)dt\Big ]dy. \end{aligned}$$

Since \(g(y)\) is nondecreasing, \(\varDelta (\tau )\) will be nonpositive if

$$\begin{aligned} g(y)\le & {} \frac{\tau }{n-2} \, \frac{\int _{y}^{\infty }\, t^{n-2}\, e^{-\tau t}\, dt}{\int _{y}^{\infty }\, t^{n-3}\, e^{-\tau t}\, dt},~~\text{ for } \text{ all }~y>0 ~\text{ and }~ \tau \ge \tau _0. \end{aligned}$$

In the last equality we use the transformation \(\tau \,t = u\) to obtain

$$\begin{aligned} g(y)\le & {} \frac{1}{n-2}\, E_{\tau ^{*}} (U) \end{aligned}$$

where \(\tau ^{*} = \tau \, y, ~ \tau _0^{*} = \tau _{0}\, y\). The expectation is taken with respect to the density \(f^{*}(u) = u^{n-3}\, e^{- u}\) truncated on \((\tau ^{*}, \infty )\). Observe that \(f^{*}(u)\) has increasing MLR in \(\tau \). Thus we have

$$\begin{aligned} g(y)\le & {} \frac{1}{n-2}\,\inf _{\tau ^{*}} E_{\tau ^{*}} (U) = \frac{1}{n-2}\, E_{\tau _{0}^{*}} (U). \end{aligned}$$

So

$$\begin{aligned} g(y)\le & {} \frac{1}{n-2}\, \frac{\int _{\tau _{0}^{*}}^{\infty }\, u^{n-2}\, e^{- u}\, du}{\int _{\tau _{0}^{*}}^{\infty }\, u^{n-3}\, e^{- u}\, du} = g_{0}(y). \end{aligned}$$

This completes the proof of the theorem.

Consider the following functions

$$\begin{aligned} g_{m}(t) = e^{-\tau _0\, t}\, t^{m-1},~~~G_{m}(t) = \int _{t}^{\infty }\, u^{m-1}\, e^{-\tau _0\, u}\, du. \end{aligned}$$

Lemma 6.1

\(\frac{g_{m}(t)}{\tau _0\, G_{m}(t)} \le 1\)   for all \(m\ge 1\).

Proof

For \(m\ge 1\)

\(G_{m}(t) = \int _{t}^{\infty }\, u^{m-1}\, e^{-\tau _0\, u}\, du \ge t^{m-1}\, \int _{t}^{\infty }\,e^{-\tau _0\, u}\, du = \frac{1}{\tau _0}\, t^{m-1}\, e^{-\tau _0\, t} = \frac{g_{m}(t)}{\tau _0}\).

As a consequence of the above lemma we have the following result.

Lemma 6.2

$$\begin{aligned} E\Big (\frac{1}{\tau ^l T^p}\Big )\, \Big (\frac{g_{m}(t)}{G_{m}(t)}\Big )^k \le \frac{(\tau _0)^{k-l+p}}{1+(l-p)\xi }\, \frac{\varGamma (n-p)}{\varGamma (n)},~~n\ge p,~~l\ge p, \end{aligned}$$

and if \(p=l\) then

$$\begin{aligned} E\Big (\frac{1}{\tau T}\Big )^l\, \Big (\frac{g_{m}(t)}{G_{m}(t)}\Big )^k \le (\tau _0)^k\, \frac{\varGamma (n-l)}{\varGamma (n)},~~n\ge l, \end{aligned}$$

where the expectation is taken with respect to the joint distribution of \(X\) and \(\tau \).

Proof

$$\begin{aligned} E\Big (\frac{1}{\tau ^l T^p}\Big )\, \Big (\frac{g_{m}(t)}{G_{m}(t)}\Big )^k \!= & {} \! \frac{\tau _0^{\xi ^{-1}}}{\xi } \int _{\tau _0}^{\infty } \tau ^{-1-\xi ^{-1}-l} \Big [\frac{\tau ^n}{\varGamma {(n)}}\int _{0}^{\infty } \Big (\frac{g_{m}(t)}{G_{m}(t)}\Big )^k e^{-\tau t} t^{n-p-1} dt\Big ] d\tau \\\le & {} \frac{\varGamma {(n-p)}}{\varGamma (n)}\,\frac{\tau _0^{k + \xi ^{-1}}}{\xi }\, \int _{\tau _0}^{\infty } \tau ^{-1-\xi ^{-1}-l+p} d\tau \nonumber \\= & {} \frac{(\tau _0)^{k-l+p}}{1+(l-p)\xi }\, \frac{\varGamma {(n-p)}}{\varGamma (n)}. \end{aligned}$$

Lemma 6.3

\(E\Big (\frac{U(T)}{T}\Big ) = -\frac{1}{n-1} E(U'(T)) + \frac{\tau }{n-1}\, E(U(T))\), \(T \sim G(n, \tau )\)

Proof

$$\begin{aligned} E\Big (\frac{U(T)}{T}\Big )= & {} \frac{\tau ^n}{\varGamma (n)}\, \int _{0}^{\infty } u(t) t^{n-2} e^{-\tau t}\, dt = \frac{\tau ^n}{\varGamma (n)}\, \int _{0}^{\infty } u(t) e^{-\tau t} \frac{1}{n-1} \, d(t^{n-1}) \\= & {} \frac{\tau ^n}{\varGamma (n)} \Big [ \frac{1}{n-1} u(t) e^{- \tau t} t^{n-1} \Big |_{t=0}^{+ \infty } - \int _{0}^{\infty } \frac{1}{n-1} \Big (u'(t) e^{- \tau t} - u(t) \tau e^{- \tau t}\Big ) \Big ] \\= & {} -\frac{1}{n-1} E(U'(T)) \!+\! \frac{\tau }{n-1}\, E(U(T)), \hbox { considering that } \lim _{t ->0}u(t) e^{- \tau t} t^{n-1} \\= & {} \lim _{t -> +\infty } u(t) e^{- \tau t} t^{n-1} = 0. \end{aligned}$$

Lemma 6.4

\(\lim _{\xi \rightarrow \infty } ({r_{\xi }}(\delta _{GB}) - r_{\xi }(\delta _{\xi }) )= 0.\)

Proof

$$\begin{aligned} r_{\xi }(\delta _{\xi })= & {} \int _{\tau _0}^{\infty }\, \pi _{\xi }(\tau ) \int _{0}^{\infty }\,\Big (\frac{n_{\xi } - 2}{\tau t} - 1 + \frac{g_{n_{\xi } - 2}(t)}{\tau G_{n_{\xi } - 2}(t)}\Big )^2\, f(t, \tau ) dt d\tau \\= & {} \Big (\frac{(n_{\xi } - 2)^2}{(n-1)(n-2)} - 2 \frac{n_{\xi } - 2}{n-1} + 1 \Big ) \\&+ \int _{\tau _0}^{\infty }\, \pi _{\xi }(\tau ) \int _{0}^{\infty }\, \Big (\frac{g_{n_{\xi } - 2}(t)}{\tau G_{n_{\xi } - 2}(t)}\Big )^2 \, f(t, \tau ) dt d\tau \\&+ 2 \int _{\tau _0}^{\infty }\, \pi _{\xi }(\tau ) \int _{0}^{\infty }\, \Big (\frac{n_{\xi } - 2}{\tau t} - 1\Big ) \frac{g_{n_{\xi } - 2}(t)}{\tau G_{n_{\xi } - 2}(t)}\, f(t, \tau ) dt d\tau . \end{aligned}$$

In a similar way,

$$\begin{aligned} r_{\xi }(\delta _{GB})= & {} \int _{\tau _0}^{\infty }\, \pi _{\xi } (\tau ) \int _{0}^{\infty }\,\Big (\frac{n - 2}{\tau t} - 1 + \frac{g_{n - 2}(t)}{\tau G_{n - 2}(t)}\Big )^2\, f(t, \tau ) dt d\tau \\= & {} \frac{1}{n-1} + \int _{\tau _0}^{\infty }\, \pi _{\xi }(\tau ) \int _{0}^{\infty }\, \Big (\frac{g_{n - 2}(t)}{\tau G_{n - 2}(t)}\Big )^2 \, f(t, \tau ) dt d\tau \\&+ 2\int _{\tau _0}^{\infty }\, \pi _{\xi }(\tau ) \int _{0}^{\infty }\, \Big (\frac{n- 2}{\tau t} - 1\Big ) \frac{g_{n - 2}(t)}{\tau G_{n - 2}(t)}\, f(t, \tau ) dt d\tau . \end{aligned}$$

Considering that,

  1. 1.

    \(\displaystyle n_{\xi } = n - \frac{1}{\xi } \rightarrow _{\xi \rightarrow + \infty } n\)

  2. 2.

    \(\displaystyle g_{n_{\xi }-2}(t) = e^{- \tau _0 t} t^{n_{\xi } - 2 - 1} \rightarrow _{\xi \rightarrow + \infty } e^{- \tau _0 t} t^{n - 2 - 1} = g_{n-2}(t)\)

  3. 3.

    \(\displaystyle G_{n_{\xi }-2}(t) \!=\! \int _t^{+ \infty } \, e^{- \tau _0 u} u^{n_{\xi } - 2 - 1} du \rightarrow _{\xi \rightarrow + \infty } \int _t^{+ \infty } \, e^{- \tau _0 u} u^{n - 2 - 1} du = G_{n-2}(t)\).

It is obvious that, \(\lim _{\xi \rightarrow \infty } ({r_{\xi }}(\delta _{GB}) - r_{\xi }(\delta _{\xi }) ) = 0.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, Y.M., Kumar, S. & Petropoulos, C. Estimating the shape parameter of a Pareto distribution under restrictions. Metrika 79, 91–111 (2016). https://doi.org/10.1007/s00184-015-0545-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-015-0545-9

Keywords

Mathematics Subject Classification

Navigation