Skip to main content
Log in

Likelihood-based inference for dynamic panel data models

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

This paper considers maximum likelihood (ML)-based inferences for dynamic panel data models. We focus on the analysis of the panel data with a large number (N) of cross-sectional units and a small number (T) of repeated time series observations for each cross-sectional unit. We examine several different ML estimators and their asymptotic and finite-sample properties. Our major finding is that when data follow unit-root processes without or with drifts, the ML estimators have singular information matrices. This is a case of Sargan (Econometrica 51:1605–1634, 1983) in which the first-order condition for identification fails, but parameters are identified. The ML estimators are consistent, but they have non-standard asymptotic distributions, and their convergence rates are lower than N1/2. In addition, the sizes of usual Wald statistics based on the estimators are distorted even asymptotically, and they reject the unit-root hypothesis too often. However, following Rotnitzky et al. (Bernoulli 6:243–284, 2000) we show that likelihood ratio (LR) tests for unit root follow mixtures of chi-square distributions. Our Monte Carlo experiments show that the LR tests with the p-values from the mixed distributions are much better sized than the Wald tests, although they tend to slightly over-reject the unit-root hypothesis in small samples. It is also shown that the LR tests for unit roots have good finite-sample power properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Hahn and Kuersteiner (2002) also consider the ML estimator for the FE dynamic model with large N and T. They find the ML estimator, which is the within estimator, is consistent, but it is asymptotically biased. Hahn and Kuersteiner provide a bias-corrected ML estimator. Hayakawa and Pesaran (2015) derives the asymptotic distribution of the HPT estimator under more general conditions (i.e., non-normal and cross-sectionally heteroskedastic data).

  2. Kruiniger (2013) also deals with general identification issues related to the GMM and quasi-maximum likelihood (QML) versions of the RE ML estimator, and QML version of the HPT ML estimator when data are not normally distributed.

  3. See also a published paper of Alvarez and Arellano (2022), which is an updated version of Alvarez and Arellano (2004).

  4. Alvarez and Arellano (2022) independently found a similar result for a more general model, although they do not consider the asymptotic distribution of the RE ML estimator when data follow unit-root processes.

  5. This result was obtained in the 2004 version of this paper. Extending this result, Kruiniger (2013) shows that the convergence rates of the RE and HPT ML estimators are still N1/4 even if data are not normally distributed.

  6. See HPT for the derivation of \(\det [\Omega_{T} (\omega )]\). The parameter \(\omega\) in their paper is equivalent to \((\omega + 1)\) in this paper.

  7. The \(f(u_{i}^{*} |y_{i0} ,(\nu ,\omega )^{\prime})\) function can be easily obtained if

    $$\left( {\begin{array}{*{20}c} {\alpha_{i} } \\ {\varepsilon_{i} } \\ \end{array} } \right)\sim N\left( {\left( {\begin{array}{*{20}c} {\pi_{0} y_{i0} } \\ {0_{T \times 1} } \\ \end{array} } \right),\left( {\begin{array}{*{20}c} {v\omega } & {0_{1 \times t} } \\ {0_{t \times 1} } & {\nu I_{T} } \\ \end{array} } \right)} \right),$$

    conditionally on \(y_{i0}\). Under this assumption, \(\psi = (\delta - 1) + \pi_{0}\). The \(y_{i0}\) needs not be normal. This result can be easily extended to the cases in which the model (1) includes some strictly exogenous regressors,\({\mathbf{x}}_{i} = (x^{\prime}_{i0} ,x^{\prime}_{i1} ,...,x^{\prime}_{iT} )^{\prime}\):\(y_{it} = \delta y_{i,t - 1} + x^{\prime}_{it} \beta + u_{it}\). For these cases, following Wooldridge (2000), we may assume that conditionally on \((y_{i0} ,{\mathbf{x}^{\prime}}_{i} )^{\prime}\)

    $$\left( {\begin{array}{*{20}c} {\alpha_{i} } \\ {\varepsilon_{i} } \\ \end{array} } \right)\sim N\left( {\left( {\begin{array}{*{20}c} {\pi_{0} y_{i0} + {\mathbf{x^{\prime}}}_{i} \pi_{x} } \\ 0 \\ \end{array} } \right),\left( {\begin{array}{*{20}c} {v\omega } & {0_{1 \times T} } \\ {0_{1 \times T} } & {\nu I_{T} } \\ \end{array} } \right)} \right).$$

    Under this assumption, the log-density of \(\Delta y_{i}^{*}\) conditional on \((y_{i0} ,{\mathbf{x^{\prime}}}_{i} )^{\prime}\) is obtained by replacing \((\Delta y_{i1} - \psi y_{i0})\) and \((\Delta y_{i} - \delta \Delta y_{i, - 1})\) in \(\ell_{RE,i} (\theta)\) by \((\Delta y_{i1} - \psi y_{i0} - {\mathbf{x^{\prime}}}_{i} \pi_{0,x})\) and \((\Delta y_{i} - \delta \Delta y_{i, - 1} - \Delta {\mathbf{X}}_{i} \beta)\), respectively, where

    $${\mathbf{x}}_{i}^{{\prime }} \pi_{0,x} = \Delta x_{i1}^{{\prime }} \beta + {\mathbf{x}}^{{\prime }}_{i} \pi_{x} ;\,\Delta {\mathbf{X}}_{i} = (\Delta x_{i2} ,\Delta x_{i3} ,...,\Delta x_{iT} )^{{\prime }}.$$

    This conditional ML method is in contrast to the ML estimation method of Bhargava and Sargan (BS, 1983). They consider two cases: one in which \((y_{i1} ,y_{i2} ,...,y_{iT} )^{\prime}\) is normal conditionally on \((y_{i0} ,\mathbf{x}^{\prime}_{i} )^{\prime}\); and the other in which \((y_{i0} ,y_{i1} ,...,y_{iT} )^{\prime}\) is normal conditionally on \({\mathbf{x}}_{i}\) and \({\text{E}}(y_{i0} |{\mathbf{x}}_{i} ) = \mathbf{x}^{\prime}_{i} \pi_{x}\). Their second case is related to the RE model we consider here, except that BS additionally assumes that \(\alpha_{i}\) and \({\mathbf{x}}_{i}\) are independent.

  8. We can estimate \(\xi_{T}\) instead of ω. In simulations, we found that the ML algorithms converge faster when \(\xi_{T}\) is estimated. Accordingly, we have estimated \(\xi_{T}\) for our simulations.

  9. HPT in fact include an intercept term for the Δyi1 equation. But the interceptor term equals zero under our zero-mean assumption.

  10. For the cases in which \(y_{it} = \delta y_{i,t - 1} + x^{\prime}_{it} \beta + u_{it}\) and the \(x_{it}\) are strictly exogenous to \(\varepsilon_{it}\), HPT assumes that conditionally on \({\mathbf{x}}_{i}\),

    $$\left( {\begin{array}{*{20}c} {p_{i} } \\ {\varepsilon_{i} } \\ \end{array} } \right)\sim N\left( {\left( {\begin{array}{*{20}c} {\Delta {\mathbf{x^{\prime}}}_{i} \pi_{x} } \\ 0 \\ \end{array} } \right),\left( {\begin{array}{*{20}c} {\nu \omega_{HPT} } & {0_{1 \times T} } \\ {0_{1 \times T} } & {\nu I_{T} } \\ \end{array} } \right)} \right).$$

    Then, the log-density of \((\Delta y_{i1} ,...,\Delta y_{iT} )^{\prime}\) conditional on \({\mathbf{x}}_{i}\) equals \(\ell_{HPT,i} (\theta_{HPT})\) with \(\Delta y_{i1}\) and \((\Delta y_{i} - \delta \Delta y_{i, - 1})\), respectively, replaced by \((\Delta y_{i1} - \Delta {\mathbf{x^{\prime}}}_{i} \pi_{x})\) and \((\Delta y_{i} - \delta \Delta y_{i, - 1} - \Delta {\mathbf{X}}_{i} \beta)\), where \(\Delta {\mathbf{x}}_{i} = (\Delta x^{\prime}_{i1} ,...,\Delta x^{\prime}_{iT} )^{\prime}\) and \(\Delta {\mathbf{X}}_{i} = (\Delta x_{i1} ,...,\Delta x_{iT} )^{\prime}\). See HPT for the stationary conditions under which \({\text{E}}(p_{i} |{\mathbf{x}}_{i})\) is linear in \(\Delta {\mathbf{x}}_{i}\).

  11. An intriguing question would be whether the Lancaster and/or HPT estimators are consistent under broader circumstances than the RE estimator is. Consider the two conditions: (i)\(p\lim_{N \to \infty } N^{ - 1} \Sigma_{i} p_{i}^{2} < \infty\) is finite; and (ii) \(p\lim_{N \to \infty } N^{ - 1} \Sigma_{i} (y_{io} ,\alpha_{i} )^{\prime}(y_{i0} ,\alpha_{i})\) is finite. Obviously, condition (ii) is stronger than (i). Kruiniger (2002, 2013) finds that a necessary condition for consistency of the Lancaster estimator is (i). It can be shown that the same condition is required for the consistency of the HPT estimator. As long as the condition holds and the errors \(\varepsilon_{it}\) are i.i.d. and uncorrelated with \(p_{i}\), both the Lancaster and HPT estimators are consistent, even if data are not normal. In contrast, it can be shown that the consistency of the RE estimator requires the stronger restriction (ii). Thus, it is true that that the Lancaster and/or the HPT estimator are consistent under more general conditions. However, there are few realistic cases in which condition (i) holds, while (ii) is violated. Condition (ii) would be an acceptable assumption for most of the panel studies (at least the studies with short panels). If (ii) holds, all the three estimators are consistent, and thus the distinction between RE and FE becomes unimportant.

  12. See Kruiniger (2002).

  13. Lancaster (2002) also acknowledges this point.

  14. If the means of the \(y_{i0}\) and \(\alpha_{i}\) are nonzero, we need to include an intercept term, say a, in the log-likelihood function replacing \((\Delta y_{i1} - \psi y_{i0} )\) by \((\Delta y_{i1} - \psi y_{i0} - a)\). Then, the unit-root hypothesis (15) implies a = 0 in addition to the restrictions in θ*. For this case, the LR statistic for testing all the restrictions implied by (15) is a mixture of \(\chi^{2} (3)\) and \(\chi^{2} (4)\).

  15. We may consider an alternative Wald-type test statistic,\(N(\hat{\delta }_{RE} - 1)^{4} /\Upsilon^{11}\). Proposition 6 implies that under \(H_{o}^{UND}\), this statistic follows a mixture of \(\chi^{2} (1)\) and zero.

  16. These LR tests are two-tail tests. When T is fixed, the RE likelihood function is well defined in the neighborhood of \(\delta = 1\). Thus, the RE ML estimator is not subject to the boundary problem raised by Andrews (1999), and the hypothesis of \(\delta_{o} = 1\) can be tested against the two-tail alternative hypothesis of \(\delta_{0} \ne 1\). This justifies use of the LR tests. However, some one-tail alternatives of the LR tests would be more powerful since \(\delta_{o}\) is unlikely to be greater than one, although we do not investigate them here.

  17. Arellano and Bover propose to use for GMM the moment conditions,\({\text{E}}[\Delta y_{it} (y_{is} - \delta y_{i,s - 1} )] = 0\), t < s. These moment conditions are valid under (7), but not under (1) and (2). Observe that these moment conditions can identify the true value of \(\delta\) even if data follow unit-root processes without drifts. In contrast, the moment conditions by Arellano and Bond (1991),\({\text{E}}(y_{it} (\Delta y_{is} - \delta \Delta y_{i,s - 1} )) = 0\), t < s, are motivated by the model given by (1) and (2). As Blundell and Bond (1998) find, these moment conditions are unable to identify \(\delta\) if data follow random walk processes because the level instruments yit are uncorrelated with differenced regressors Δyi,s-1.

  18. The Lancaster estimator is quite sensitive to the choice of the starting parameter values used for algorithms.

  19. For the data generating process used for simulations, \(0 \le \left| {\psi_{o} } \right| \le 0.25\) because \(\psi = - (1 - \delta )\sigma_{q0}^{2} /(\sigma_{\eta }^{2} + \sigma_{q0}^{2})\). As discussed in Sect. 2, The RE and HPT ML estimators are equivalent if \(\psi_{o} = 0\)(the case in which \(y_{i0}\) and \(\delta y_{i1}\) are uncorrelated. It appears that the RE and HPT ML estimators show similar performances in Table 1 because the values used for \(\psi_{o}\) are small.

References

  • Ahn SC, Schmidt P (1995) Efficient estimation of models for dynamic panel data. J Econom 68:5–27

    Article  Google Scholar 

  • Ahn SC, Schmidt P (1997) Efficient estimation of dynamic panel data models: alternative assumptions and simplified assumptions. J Econom 76:309–321

    Article  Google Scholar 

  • Alvarez A, Arellano M (2004) Robust likelihood estimation of dynamic panel data models, mimeo. CEMFI, Spain

    Google Scholar 

  • Alvarez A, Arellano M (2022) Robust likelihood estimation of dynamic panel data models. J Econom 226:21–61

    Article  Google Scholar 

  • Anderson TW, Hsiao C (1981) Estimation of dynamic models with error components. J Am Stat Assoc 76:598–606

    Article  Google Scholar 

  • Andrews D (1999) Estimation when a parameter is on a boundary. Econometrica 67:1341–1384

    Article  Google Scholar 

  • Arellano M, Bond S (1991) Tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58:277–297

    Article  Google Scholar 

  • Arellano M, Bover O (1995) Another look at the instrumental variables estimation of error-component models. J Econom 68:29–51

    Article  Google Scholar 

  • Bhargava A, Sargan JD (1983) Estimating dynamic random effects models from panel data covering short time periods. Econometrica 51:1635–1659

    Article  Google Scholar 

  • Blundell R, Bond S (1998) Initial conditions and moment restrictions in dynamic panel data models. J Econom 87:115–143

    Article  Google Scholar 

  • Bond S, Windmeijer F (2002) Finite sample inference for GMM estimators in linear panel data models, IFS, mimeo.

  • Breitung J, Meyer W (1994) Testing for unit roots using panel data; are wages on different bargaining levels cointegrated. Appl Econ 26:353–361

    Article  Google Scholar 

  • Cox DR, Reid N (1987) Parameter orthogonally and approximate conditional inference (with discussion). J Royal Stat Soc B 49:1–39

    Google Scholar 

  • Gouriéroux C, Monfort A, Trognon A (1984) Pseudo maximum likelihood methods: Theory. Econometrica 52:681–700

    Article  Google Scholar 

  • Hahn J, Kuersteiner G (2002) Asymptotically unbiased inference for a dynamic panel data model with fixed effects when both n and T are large. Econometrica 70:1639–1657

    Article  Google Scholar 

  • Harris R, Tzavalis E (1999) Inference for unit roots in dynamic panels where the time dimension is fixed. J Econom 91:2001–2226

    Article  Google Scholar 

  • Hayakawa K, Pesaran MH (2015) Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity. J Econom 118:111–134

    Article  Google Scholar 

  • Hsiao C (1986) Analysis of panel data. University Press, Cambridge, UK, Cambridge

    Google Scholar 

  • Hsiao C, Pesaran MH, Tahmiscioglu AK (2002) Maximum likelihood estimation of fixed effects dynamic panel data models covering short time period. J Econom 109:107–150

    Article  Google Scholar 

  • Im K, Pesaran MH, Shin Y (2003) Testing for unit roots in heterogeneous panels. J Econom 115:53–74

    Article  Google Scholar 

  • Kruiniger H (2008) Maximum likelihood estimation and inference methods for the covariance stationary panel AR(1)/unit root model. J Econom 144:447–464

    Article  Google Scholar 

  • Kruiniger H (2013) Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions. J Econom 173:175–188

    Article  Google Scholar 

  • Kruiniger H (2002) On the estimation of panel regression models with fixed effects, Queen Mary, University of London, mimeo.

  • Lancaster T (2002) Orthogonal parameters and panel data. Rev Econ Stud 69:647–666

    Article  Google Scholar 

  • Levin A, Lin F, Chu C (2002) Unit root tests in panel data: asymptotic and finite-sample properties. J Econom 108:1–24

    Article  Google Scholar 

  • Moon H, Phillips PCB (2004) GMM estimation of autoregressive roots near unity with panel data. Econometrica 72:467–522

    Article  Google Scholar 

  • Moon H, Phillips P, Perron B (2007) Incidental trends and the power of panel unit root tests. J Econom 141:416–459

    Article  Google Scholar 

  • Neyman J, Scott E (1948) Consistent estimates based on partially consistent observations. Econometrica 16:1–32

    Article  Google Scholar 

  • Nickell S (1981) Biases in dynamic models with fixed effects. Econometrica 49:1399–1416

    Article  Google Scholar 

  • Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Rotnitzky A, Cox DR, Bottai M, Robins J (2000) Likelihood-based inference with singular information matrix. Bernoulli 6:243–284

    Article  Google Scholar 

  • Sargan JD (1983) Identification and lack of identification. Econometrica 51:1605–1634

    Article  Google Scholar 

  • Thomas G (2005) Maximum likelihood based estimation of dynamic panel data Models, Ph.D. dissertation, Arizona State University.

  • Wooldridge JM (2000) A framework for estimating dynamic, unobserved effects panel data models with possible feedback to future explanatory variables. Econ Lett 68:245–250

    Article  Google Scholar 

Download references

Acknowledgements

The first version of this paper was written and circulated in the year of 2004. The first author gratefully acknowledges the financial support of the College of Business and Dean's Council of 100 at Arizona State University, the Economic Club of Phoenix, and the alumni of the College of Business. We would like to thank participants in the econometrics seminar at Rice University, the Eighth Annual Texas Econometrics Camp, the University of California at San Diego, Pennsylvania State University, the University of California at Los Angeles, Hong Kong University of Science and Technology, Nanyang Technological University, and Singapore Management University. The views and research contained in this paper represent those of the individual authors, and not of S&P Global.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung C. Ahn.

Ethics declarations

Conflict of interest

Seung C. Ahn declares that he has no conflict of interest. Gareth M. Thomas declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Equation (12): Define \(P_{T} = T^{ - 1} 1_{T} 1^{\prime}_{T}\),\(Q_{T} = I_{T} - P_{T}\); and

$$D_{T - 1}^{{\prime }} = \left( {\begin{array}{*{20}c} { - 1} & 1 & 0 & {...} & 0 & 0 \\ 0 & { - 1} & 1 & {...} & 0 & 0 \\ : & : & : & {} & : & : \\ 0 & 0 & 0 & {...} & 1 & 0 \\ 0 & 0 & 0 & {...} & { - 1} & 1 \\ \end{array} } \right)_{(T - 1) \times T} .$$

Observe that \(D_{T - 1}^{{\prime }} (y_{i1} ,...,y_{iT} )^{{\prime }} = \Delta y_{i}\) and \(D_{T - 1}^{{\prime }} 1_{T}\) = \(0_{(T - 1) \times 1}\). By Rao (1973, p. 77), we can have \(Q_{T} = D_{T - 1} B_{T - 1}^{ - 1} D_{T - 1}^{{\prime }}\). We can also show

$$\overline{{\Delta_{0} y_{i} }} \equiv T^{ - 1} \Sigma_{t = 1}^{T} (y_{it} - y_{i0} ) = \Delta y_{i1} + k_{T - 1}^{{\prime }} \Delta y_{i} .$$

Similarly,\(\overline{{\Delta_{0} y_{i, - 1} }} = k_{T - 1}^{{\prime }} \Delta y_{i, - 1}\). Using these results, we obtain

$$\begin{aligned} &(\Delta_{0} y_{i} - \Delta_{0} y_{i, - 1} \delta - p_{i} 1_{T} )^{{\prime }} (\Delta_{0} y_{i} - \Delta_{0} y_{i, - 1} \delta - p_{i} 1_{T} ) \hfill \\ &\quad = (\Delta_{0} y_{i} - \Delta_{0} y_{i, - 1} \delta - p_{i} 1_{T} )^{{\prime }} Q_{T} (\Delta_{0} y_{i} - \Delta_{0} y_{i, - 1} \delta - p_{i} 1_{T} ) \hfill \\ & \qquad + (\Delta_{0} y_{i} - \Delta_{0} y_{i, - 1} \delta - p_{i} 1_{T} )^{{\prime }} P_{T} (\Delta_{0} y_{i} - \Delta_{0} y_{i, - 1} \delta - p_{i} 1_{T} ) \hfill \\ & \quad= (y_{i} - y_{i, - 1} \delta )^{{\prime }} Q_{T} (y_{i} - y_{i, - 1} \delta ) + T(\overline{{\Delta_{0} y_{i} }} - \overline{{\Delta_{0} y_{i, - 1} }} \delta - p_{i} )^{2} \hfill \\ &\quad = (\Delta y_{i} - \Delta y_{i, - 1} \delta )^{{\prime }} B_{T - 1}^{ - 1} (\Delta y_{i} - \Delta y_{i, - 1} \delta ) + T(\Delta y_{i1} + k_{T - 1}^{{\prime }} (\Delta y_{i} - \Delta y_{i, - 1} \delta ) - p_{i} )^{2} . \hfill \\ \end{aligned}$$

Proof of Proposition 1

A straight algebra shows

$$\begin{aligned} & f_{FE,i} (\delta ,\nu ,p_{i} )f(p_{i} |\omega_{HPT} ,\nu ) \hfill \\ & \quad = \frac{1}{{(2\pi )^{T/2} v^{T/2} }}\exp \left[ { - \frac{1}{2}\left( {\Delta y_{i} - \Delta y_{i, - 1} \delta } \right)^{{\prime }} B_{T - 1}^{ - 1} \left( {\Delta y_{i} - \Delta y_{i, - 1} \delta } \right) - \frac{T}{2\nu }(p_{i} - g_{i} )^{2} } \right] \hfill \\ & \qquad \times \frac{1}{{(2\pi )^{1/2} \nu^{1/2} (\omega_{HPT} )^{1/2} }}\exp \left( { - \frac{1}{{2\nu \omega_{HPT} }}p_{i}^{2} } \right) \hfill \\ & = \frac{1}{{(2\pi )^{T/2} v^{T/2} }}\exp \left[ { - \frac{1}{2}\left( {\Delta y_{i} - \Delta y_{i, - 1} \delta } \right)^{{\prime }} B_{T - 1}^{ - 1} \left( {\Delta y_{i} - \Delta y_{i, - 1} \delta } \right)} \right] \hfill \\ & \qquad \times \frac{1}{{(2\pi )^{1/2} v^{1/2} (\omega_{HPT} )^{1/2} }}\exp \left[ { - \frac{T}{2\nu }p_{i}^{2} - \frac{1}{{2\nu \omega_{HPT} }}p_{i}^{2} + \frac{T}{\nu }p_{i} g_{i} - \frac{T}{2\nu }g_{i}^{2} } \right]. \hfill \\ \end{aligned}$$

where \(g_{i} = \Delta y_{i1} + k_{T - 1}^{{\prime }} (\Delta y_{i} - \Delta y_{i, - 1} \delta)\). We can also show:

$$\begin{aligned} & \frac{1}{{(2\pi )^{1/2} v^{1/2} (\omega_{HPT} )^{1/2} }}\exp \left[ { - \frac{T}{2\nu }p_{i}^{2} - \frac{1}{{2\nu \omega_{HPT} }}p_{i}^{2} + \frac{T}{\nu }p_{i} g_{i} - \frac{T}{2\nu }g_{i}^{2} } \right] \hfill \\ &\quad = (\xi_{HPT,T} )^{ - 1/2} \frac{{(\xi_{HPT,T} )^{1/2} }}{{(2\pi )^{1/2} v^{1/2} (\omega_{HPT} )^{1/2} }}\exp \left[ { - \frac{{\xi_{HPT,T} }}{{2\nu \omega_{HPT} }}\left( {p_{i} - \frac{{T\omega_{HPT} }}{{\xi_{HPT,T} }}g_{i} } \right)^{2} } \right] \hfill \\ & \qquad \times \exp \left[ { - \frac{T}{{2\nu \xi_{HPT,T} }}g_{i}^{2} } \right]. \hfill \\ \end{aligned}$$

Thus,

$$\begin{aligned} & \int_{ - \infty }^{\infty } {f_{FE,i} (\delta ,\nu ,p_{i} )f_{i} (p_{i} |\omega_{HPT} ,\nu )dp_{i} } \hfill \\ &\quad = \frac{1}{{(2\pi )^{T/2} \nu^{T/2} (\xi_{HPT,T} )^{1/2} }}\exp \left[ { - \frac{1}{2\nu }(\Delta y_{i} - \Delta y_{i, - 1} \delta )^{\prime}B_{T - 1}^{ - 1} (\Delta y_{i} - \Delta y_{i,t - 1} \delta ) - \frac{T}{{2\nu \xi_{HPT,T} }}g_{i}^{2} } \right] \hfill \\ & \qquad \times \int_{ - \infty }^{\infty } {\frac{{(\xi_{HPT,T} )^{1/2} }}{{(2\pi )^{1/2} \nu^{1/2} (\omega_{HPT} )^{1/2} }}\exp \left[ { - \frac{{\xi_{HPT,T} }}{{2\nu \omega_{HPT} }}\left( {p_{i} - \frac{{T\omega_{HPT} }}{{\xi_{HPT,T} }}g_{i}^{2} } \right)^{2} } \right]} dr_{i} \hfill \\ &\quad = \frac{1}{{(2\pi )^{T/2} \nu^{T/2} (\xi_{HPT,T} )^{1/2} }}\exp \left[ { - \frac{1}{2\nu }(\Delta y_{i} - \Delta y_{i, - 1} \delta )^{\prime}B_{T - 1}^{ - 1} (\Delta y_{i} - \Delta y_{i,t - 1} \delta ) - \frac{T}{{2\nu \xi_{HPT,T} }}g_{i}^{2} } \right] \hfill \\ &\quad = f_{HPT,i} (r_{i} |\theta_{HPT} ). \hfill \\ \end{aligned}$$

The following lemmas are useful to prove the propositions in Sect. 3. The first two lemmas provide alternative forms of \(\Omega_{T} (\omega )\) and \([\Omega_{T} (\omega )]^{ - 1}\).

Lemma A.1

Let \(\Omega_{s} (\omega )\) be the s × s (s = 2, …, T) matrix of the form of \(\Omega_{T} (\omega )\) in Sect. 2. Let:

$$L_{s}^{{\prime }} = \left( {\begin{array}{*{20}c} 1 & 0 & 0 & {...} & 0 & 0 \\ { - 1} & 1 & 0 & {...} & 0 & 0 \\ 0 & { - 1} & 1 & {...} & 0 & 0 \\ : & : & : & {} & : & : \\ 0 & 0 & 0 & {...} & 1 & 0 \\ 0 & 0 & 0 & {...} & { - 1} & 1 \\ \end{array} } \right)_{s \times s} ;\,c_{s} = \left( {\begin{array}{*{20}c} 1 \\ 0 \\ 0 \\ 0 \\ : \\ 0 \\ \end{array} } \right)_{s \times s} .$$

Then,\(\Omega_{s} (\omega ) = L_{s}^{{\prime }} L_{s} + \omega c_{s} c_{s}^{{\prime }}\).

Lemma A.2

\([\Omega_{T} (\omega )]^{ - 1} = (L_{T}^{{\prime }} L_{T} )^{ - 1} - (T\omega /(T\omega + 1))\overline{k}_{T} \overline{k}_{T}^{{\prime }}\), where \(\overline{k}_{T}^{{\prime }} = (1,k_{T - 1}^{{\prime }} )^{{\prime }}\).

Lemma A.3

\(B_{T - 1}^{ - 1} = (\tilde{D}^{\prime}_{T - 1} \tilde{D}_{T - 1} )^{ - 1} - Tm_{T - 1} m^{\prime}_{T - 1}\), where \(m_{T - 1} = T^{ - 1} (1,2,\,\,...\,\,,\,\,T - 1)^{\prime}\) and \(\tilde{D}_{T - 1}\) is the square matrix of the first \((T - 1)\) columns of \(D^{\prime}_{T - 1}\). In addition, \({\text{trace}}\left( {B_{T - 1}^{ - 1} } \right) = (T - 1)(T + 1)/6\); and \({\text{trace}}\left( {k_{T - 1} k^{\prime}_{T - 1} } \right) = (T - 1)(2T - 1)/(6T)\).

Lemma A.4

The first-order and second-order derivatives of \(\ell_{RE,i} (\theta )\) are given:

$$\begin{aligned} \ell_{RE,i,\delta } & = \frac{1}{\nu }\Delta y_{i, - 1}^{{\prime }} B_{T - 1}^{ - 1} (\Delta y_{i} - \Delta y_{i, - 1} \delta ) + \frac{T}{{\nu \xi_{T} }}\Delta y_{i, - 1}^{{\prime }} k_{T - 1} d_{i} (\psi ,\delta ); \hfill \\ \ell_{RE,i,\omega } &= - \frac{T}{{2\xi_{T} }} + \frac{{T^{2} }}{{2\nu \xi_{T}^{2} }}(d_{i} (\psi ,\delta ))^{2} ; \hfill \\ \ell_{RE,i,\nu } &= - \frac{T}{2\nu } + \frac{1}{{2\nu^{2} }}\left( {\Delta y_{i} - \Delta y_{i, - 1} \delta } \right)^{\prime } B_{T - 1}^{ - 1} \left( {\Delta y_{i} - \Delta y_{i, - 1} \delta } \right) + \frac{T}{{2\nu^{2} \xi_{T} }}\left( {d_{i} (\psi ,\delta )} \right)^{2} ; \hfill \\ \ell_{RE,i,\psi } &= \frac{T}{{\nu \xi_{T} }}y_{i0} d_{i} (\psi ,\delta ); \hfill \\ \ell_{RE,i,\delta \delta } &= - \frac{1}{\nu }\Delta y_{i, - 1}^{{\prime }} B_{T - 1}^{ - 1} \Delta y_{i, - 1} - \frac{T}{{\nu \xi_{T} }}\Delta y_{i, - 1}^{{\prime }} k_{T - 1} k_{T - 1}^{{\prime }} \Delta y_{i, - 1} ; \hfill \\ \ell_{RE,i,\delta \nu } &= - \frac{1}{{\nu^{2} }}\Delta y_{i, - 1}^{{\prime }} B_{T - 1}^{ - 1} (\Delta y_{i} - \Delta y_{i, - 1} \delta ) - \frac{T}{{\nu^{2} \xi_{T} }}\Delta y_{i, - 1}^{{\prime }} k_{T - 1} d_{i} (\psi ,\delta ); \hfill \\ \ell_{RE,i,\delta \omega } &= - \frac{{T^{2} }}{{\nu \xi_{T}^{2} }}\Delta y_{i, - 1}^{{\prime }} k_{T - 1} d_{i} (\psi ,\delta );\,\ell_{RE,i,\delta \psi } = - \frac{T}{{\nu \xi_{T} }}\Delta y_{i, - 1}^{{\prime }} k_{T - 1} y_{i0} ; \hfill \\ \ell_{RE,i,\nu \nu } &= \frac{T}{{2\nu^{2} }} - \frac{1}{{\nu^{3} }}(\Delta y_{i} - \Delta y_{i, - 1} \delta )^{{\prime }} B_{T - 1}^{ - 1} (\Delta y_{i} - \Delta y_{i, - 1} \delta ) - \frac{T}{{\nu^{3} \xi_{T} }}\left( {d_{i} (\psi ,\delta )} \right)^{2} ; \hfill \\ \ell_{RE,i,\nu \omega } & = - \frac{{T^{2} }}{{2\nu^{2} \xi_{T}^{2} }}\left( {d_{i} (\psi ,\delta )} \right)^{2} ;\,\ell_{RE,i,\nu \psi } = - \frac{T}{{\nu^{2} \xi_{T} }}d_{i} (\psi ,\delta )y_{i0} ; \hfill \\ \ell_{RE,i,\omega \omega } & = \frac{{T^{2} }}{{2\xi_{T}^{2} }} - \frac{{T^{3} }}{{\nu \xi_{T}^{3} }}\left( {d_{i} (\psi ,\delta )} \right)^{2} ;\,\ell_{RE,i,\lambda \psi } = - \frac{{T^{2} }}{{\nu \xi_{T}^{2} }}d_{i} (\psi ,\delta )y_{i0} ;\,\ell_{RE,i,\psi \psi } = - \frac{T}{{\nu \xi_{T} }}(y_{i0} )^{2} , \hfill \\ \end{aligned}$$

where \(d_{i} (\psi ,\delta ) = \Delta y_{i1} - \psi y_{i0} + k^{\prime}_{T - 1} (\Delta y_{i} - \delta \Delta y_{i, - 1})\).

Lemma A.5

Under the RE assumption,

$$\begin{aligned} {\text{E}}\left( {\Delta y_{i, - 1}^{{\prime }} B_{T - 1}^{ - 1} \Delta y_{i, - 1} } \right) & = \psi^{2} \sigma_{{y_{0} }}^{2} c_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} c_{T - 1} \hfill \\ &\qquad + \nu \times {\text{trace}}\left( {B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} \Omega_{T - 1,o} H_{T - 1} (\delta_{o} )} \right); \hfill \\ \end{aligned}$$
(28)
$$\begin{aligned} {\text{E}}\left( {\Delta y_{i, - 1}^{{\prime }} k_{T - 1} k_{T - 1}^{{\prime }} \Delta y_{i, - 1} } \right) & = \psi^{2} \sigma_{{y_{0} }}^{2} c_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )k_{T - 1} k_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )^{{\prime }} c_{T - 1} \hfill \\ & \qquad + \nu_{o} \times {\text{trace}}\left( {k_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )^{{\prime }} \Omega_{T - 1,o} H_{T - 1} (\delta_{o} )k_{T - 1} } \right); \hfill \\ \end{aligned}$$
(29)
$${\text{E}}\left( {\Delta y_{i, - 1}^{{\prime }} B_{T - 1}^{ - 1} \Delta \varepsilon_{i} } \right) = - \nu_{o} b(\delta_{o} )^{{\prime }} ;$$
(30)
$${\text{E}}\left( {\Delta y_{i, - 1}^{{\prime }} k_{T - 1} \left( {\Delta y_{i1} - \psi y_{i0} + k_{T - 1}^{{\prime }} (\Delta y_{i} - \Delta y_{i, - 1} \delta_{o} )} \right)} \right) = \frac{{\nu_{o} \xi_{T,o} }}{T}b(\delta_{o} )^{{\prime }} ;$$
(31)
$${\text{E}}\left[ {(\Delta y_{i} - \Delta y_{i, - 1} \delta_{o} )^{{\prime }} B_{T - 1}^{ - 1} (\Delta y_{i} - \Delta y_{i, - 1} \delta_{o} )} \right] = (T - 1)\nu_{o} ;$$
(32)
$${\text{E}}[(\Delta y_{i1} - \psi_{o} y_{i0} + k_{T - 1}^{{\prime }} (\Delta y_{i} - \Delta y_{i, - 1} \delta_{o} ))^{2} ] = \frac{{\xi_{T,o} \nu_{o} }}{T},$$
(33)

where \(\xi_{T,0} = T\omega_{o} + 1\),\(\Omega_{T - 1,o} = \Omega_{T - 1} (\omega_{o})\),\(b(\delta )\) is defined in (13),\(b(\delta )^{\prime} = db/d\delta\), and

$$H_{T - 1} (\delta )^{\prime} = \left( {\begin{array}{*{20}c} 1 & 0 & 0 & {...} & 0 \\ \delta & 1 & 0 & {...} & 0 \\ : & : & : & {} & : \\ {\delta^{T - 3} } & {\delta^{T - 4} } & {\delta^{T - 5} } & {...} & 0 \\ {\delta^{T - 2} } & {\delta^{T - 3} } & {\delta^{T - 4} } & {...} & 1 \\ \end{array} } \right)_{(T - 1) \times (T - 1)} .$$

Proof

Define \(h_{i,T - 1} = (u_{i} ,\Delta \varepsilon_{i2} ,...,\Delta \varepsilon_{i,T - 1})\), so that \({\text{Var}}(h_{i,T} ) = \nu_{o} \Omega_{T - 1,o}\), and

$$\delta y_{i, - 1} = H_{T - 1} (\delta_{o} )^{{\prime }} c_{T - 1} \psi_{o} y_{i0} + H_{T - 1} (\delta_{o} )^{{\prime }} h_{i,T - 1} .$$

Then,

$$\begin{aligned} & {\text{E}}\left( {\Delta y_{i, - 1}^{{\prime }} B_{T - 1}^{ - 1} \Delta y_{i, - 1} } \right) \hfill \\ & \quad = \psi^{2} \sigma_{{y_{0} }}^{2} c_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} c_{T - 1}\\ &\qquad + {\text{E}}\left( {h_{i,T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} h_{i,T - 1} } \right) \hfill \\ &\quad = \psi^{2} \sigma_{{y_{0} }}^{2} c_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} c_{T - 1}\\ &\qquad + {\text{trace}}\left( {{\text{E}}\left( {H_{T - 1} (\delta_{o} )B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} h_{i,T - 1} h_{i,T - 1}^{{\prime }} } \right)} \right) \hfill \\ & \quad = \psi^{2} \sigma_{{y_{0} }}^{2} c_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} c_{T - 1}\\ &\qquad+ \nu_{o} \times {\text{trace}}\left( {B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} \Omega_{T - 1,o} H_{T - 1} (\delta_{o} )} \right). \hfill \\ \end{aligned}$$

(29)–(33) can be obtained by the similar method.

Lemma A.6

Under the RE assumption,

$${\text{E}}\left( { - \ell_{RE,i,\theta \theta } (\theta_{o} )} \right) = \left( {\begin{array}{*{20}c} {B + A} & 0 & {\frac{{Tb(\delta_{o} )^{{\prime }} }}{{\xi_{T,o} }}} & {\frac{{T\psi_{o} \sigma_{{y_{0} }}^{2} }}{{\nu_{o} \xi_{T,o} }}b(\delta_{o} )^{{\prime }} } \\ 0 & {\frac{T}{{2\nu_{o}^{2} }}} & {\frac{T}{{2\nu \xi_{T,o} }}} & 0 \\ {\frac{{Tb(\delta_{o} )^{{\prime }} }}{{\xi_{T,o} }}} & {\frac{T}{{2\nu_{o} \xi_{T,o} }}} & {\frac{{T^{2} }}{{2\xi_{T,o}^{2} }}} & 0 \\ {\frac{{T\psi \sigma_{{y_{0} }}^{2} }}{{\nu_{o} \xi_{T,o} }}b(\delta_{o} )^{{\prime }} } & 0 & 0 & {\frac{{T\sigma_{{y_{0} }}^{2} }}{{\nu_{o} \xi_{T,o} }}} \\ \end{array} } \right),$$
(34)

where

$$\begin{aligned} A &= {\text{trace}}\left( {B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} \Omega_{T - 1,0} H_{T - 1} (\delta_{o} )} \right)\\ &\quad + \frac{T}{{\xi_{T,o} }}{\text{trace}}\left( {k_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )^{{^{{\prime }} }} \Omega_{T - 1,o} H_{T - 1} (\delta_{o} )k_{T - 1} } \right); \hfill \\ B &= \frac{1}{{v_{o} }}\psi^{2} \sigma_{{y_{0} }}^{2} c_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )B_{T - 1}^{ - 1} H_{T - 1} (\delta_{o} )^{{\prime }} c_{T - 1}\\ &\quad + \frac{T}{{\xi_{T,0} v_{0} }}\psi^{2} \sigma_{0}^{2} c_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )^{{\prime }} k_{T - 1} k_{T - 1}^{{\prime }} H_{T - 1} (\delta_{o} )^{{\prime }} c_{T - 1} . \hfill \\ \end{aligned}$$

Proof of Proposition 2

When \(\theta_{o} = \theta_{*} = (1,\nu_{*} ,0,0)^{\prime}\), Lemma A.1 and the definition of \(H_{T - 1} (\delta)\) in Lemma 5 imply that \(H_{T - 1} (1)^{\prime}\Omega_{T - 1} (0)H_{T - 1} (1) = I_{T - 1}\). This is so because \(\Omega_{T - 1} (0)\) = \(L^{\prime}_{T - 1} L_{T - 1}\) and \(H_{T - 1} (1) = (L^{\prime}_{T - 1} )^{ - 1}\). In addition, in (34), B = 0 because \(\psi_{o} = 0\). Using Lemma A.3 and the fact that \(\xi_{T,o} = 1\) when \(\theta_{o} = \theta_{*}\), we can show A = \(T(T - 1)/2\) = \(Tb(1)^{\prime}\). Substituting these results,\(\psi_{o} = 0\), and \(\xi_{T,o} = 1\), into (34), we have:

$${\text{E}}\left( { - \ell_{RE,i,\theta \theta } (\theta_{*} )} \right) = \left( {\begin{array}{*{20}c} {Tb(1)^{{\prime }} } & 0 & {Tb(1)^{{\prime }} } & 0 \\ 0 & {\frac{T}{{2\nu_{o}^{2} }}} & {\frac{T}{{2\nu_{o} }}} & 0 \\ {Tb(1)^{{\prime }} } & {\frac{T}{{2\nu_{o} }}} & {\frac{{T^{2} }}{2}} & 0 \\ 0 & 0 & 0 & {\frac{{T\sigma_{{y_{0} }}^{2} }}{{\nu_{o} }}} \\ \end{array} } \right),$$
(35)

which has a zero determinant. The likelihood theory indicates \({\text{E}}\left( {H_{RE,i} (\theta_{*} ) + B_{RE,i} (\theta_{*} )} \right) = 0\), at \(\theta_{o} = \theta_{*}\). Thus,\({\text{E}}\left( {B_{RE,i} (\theta_{*} )} \right)\) must be also singular.

Proof of Proposition 3

We first derive \({\text{E}}(\ell_{RE,i} (\theta ))\) under \(H_{0}^{UND}\). We can show that

$$\begin{aligned} {\text{E}}\left( {\left( {d_{i} (\psi ,\delta )} \right)^{2} } \right) & = \nu_{*} \frac{(T + 1)(2T + 1)}{{6T}} - 2\nu_{*} \frac{(T - 1)(T + 1)}{{3T}}\delta + \sigma_{{y_{0} }}^{2} \psi^{2}\\ & \quad + v_{*} \frac{(T - 1)(2T - 1)}{{6T}}\delta^{2} ; \hfill \\ {\text{E}}\left( {\Delta \varepsilon_{i} (\delta )^{{\prime }} B_{T - 1}^{ - 1} \Delta \varepsilon_{i} (\delta )} \right) &= \frac{{\nu_{*} }}{6}\left( {(T - 1)(T + 1) - 2(T - 1)(T - 2)\delta + (T - 1)(T + 1)\delta^{2} } \right), \hfill \\ \end{aligned}$$

where \(d_{i} (\psi ,\delta ) = \Delta y_{i1} - \psi y_{io} + k^{\prime}_{T - 1} (\Delta y_{i} - \Delta y_{i, - 1} \delta )\) and \(\Delta \varepsilon_{i} (\delta ) = \Delta y_{i} - \Delta y_{i, - 1} \delta\). Thus, we have

$$\begin{aligned} {\text{E}}\left( {\ell_{RE,i} (\delta ,\nu ,\omega ,\psi )} \right) & = - \frac{T}{2}\ln (\pi ) - \frac{T}{2}\ln (\nu ) - \frac{1}{2}\ln \xi_{T} \hfill \\ & \quad - \frac{1}{12}\frac{{\nu_{*} }}{\nu }\left\{ {(T - 1)(T + 1) - 2(T - 1)(T - 2)\delta + (T - 1)(T + 1)\delta^{2} } \right\} \hfill \\ & \quad - \frac{1}{12}\frac{{\nu_{*} }}{{\nu \xi_{T} }}\left\{ \begin{array}{l} (T + 1)(2T + 1) - 4(T - 1)(T + 1)\delta \hfill \\ + \sigma_{{y_{0} }}^{2} \psi^{2} + (T - 1)(2T - 1)\delta^{2} \hfill \\ \end{array} \right\}, \hfill \\ \end{aligned}$$

where \(\xi_{T} = T\omega + 1\). We now concentrate out \(\psi\),\(\omega\), and \(\nu\) from \({\text{E}}(\ell_{RE,i} (\delta ,\nu ,\omega ,\psi ))\). Since \(\psi = 0\) maximizes \({\text{E}}(\ell_{RE,i} (\delta ,\nu ,\omega ,\psi ))\), we can have the concentrated value of \({\text{E}}(\ell_{RE,i} (\delta ,\nu ,\omega ,\psi ))\):

$$\begin{aligned} {\text{E}}(\ell_{RE,i}^{c} \left( {\delta ,\nu ,\omega } \right)) & = - \frac{T}{2}\ln (\pi ) - \frac{T}{2}\ln (\nu ) - \frac{1}{2}\ln \xi_{T} \hfill \\ & \quad - \frac{1}{12}\frac{{\nu_{*} }}{\nu }\left( {(T - 1)(T + 1) - 2(T - 1)(T - 2)\delta + (T - 1)(T + 1)\delta^{2} } \right) \hfill \\ & \quad - \frac{1}{12}\frac{{\nu_{*} }}{{\nu \xi_{T} }}E\left( {(T + 1)(2T + 1) - 4(T - 1)(T + 1)\delta + (T - 1)(2T - 1)\delta^{2} } \right). \hfill \\ \end{aligned}$$

Now, solve the first-order condition with respect to \(\xi_{T}\) (instead of \(\omega\)):

\(\frac{{\partial {\text{E}}(\ell_{RE,i}^{c} \left( {\delta ,\nu ,\omega } \right))}}{{\partial \xi_{T} }} = - \frac{1}{2\xi } + \frac{1}{12}\frac{{\nu_{*} }}{{\nu \xi_{T}^{2} }}\left( \begin{gathered} (T + 1)(2T + 1) - 4(T - 1)(T + 1)\delta \hfill \\ + (T - 1)(2T - 1)\delta^{2} \hfill \\ \end{gathered} \right) = 0\).

Then we obtain:

$$\xi_{T} = \frac{1}{6}\frac{{\nu_{*} }}{\nu }\left( {(T + 1)(2T + 1) - 4(T - 1)(T + 1)\delta + (T - 1)(2T - 1)\delta^{2} } \right).$$

Thus,

$$\begin{aligned} {\text{E}}(\ell_{RE,i}^{c} \left( {\delta ,\nu } \right)) & = - \frac{T}{2}\ln (\pi ) - \frac{T}{2}\ln (\nu ) - \frac{1}{2}\ln \left( {\frac{{\nu_{*} }}{\nu }} \right) - \frac{1}{2}\ln \left( \frac{1}{6} \right) \hfill \\ & \quad - \frac{1}{2}\ln \left( {\frac{(T + 1)(2T + 1)}{6} - 2\frac{(T - 1)(T + 1)}{3}\delta + \frac{(T - 1)(2T - 1)}{6}\delta^{2} } \right) \hfill \\ & \quad - \frac{1}{12}\frac{{\nu_{*} }}{\nu }\left( {(T - 1)(T + 1) - 2(T - 1)(T - 2)\delta + (T - 1)(T + 1)\delta^{2} } \right). \hfill \\ \end{aligned}$$

Now, solving

$$\begin{aligned} &\frac{{\partial {\text{E}}\left( {\ell_{RE,i}^{c} \left( {\delta ,\nu } \right)} \right)}}{\partial \nu }\\ &\quad = - \frac{T - 1}{{2\nu }} + \frac{1}{12}\frac{{\nu_{*} }}{{\nu^{2} }}\left( {(T - 1)(T + 1) - 2(T - 1)(T - 2)\delta + (T - 1)(T + 1)\delta^{2} } \right)\\ &\quad= 0,\end{aligned}$$

we have:

$$\nu = \nu_{*} \frac{1}{T - 1}\left( {\frac{(T - 1)(T + 1)}{6} - 2\frac{(T - 1)(T - 2)}{6}\delta + \frac{(T - 1)(T + 1)}{6}\delta^{2} } \right).$$

Substituting this solution to \({\text{E}}(\ell_{RE,i}^{c} (\delta ,\nu ))\) yields

$$\begin{aligned} {\text{E}}(\ell_{RE,i}^{c} \left( \delta \right)) &= - \frac{T}{2}\ln (\pi ) - \frac{T}{2}\ln (\nu_{*} ) - \frac{T - 1}{2}\ln \left( {\frac{1}{T - 1}} \right) - \frac{1}{2}\ln \left( \frac{1}{6} \right) \hfill \\ & \quad - \frac{T - 1}{2}\ln \left( {\frac{(T - 1)(T + 1)}{6} - 2\frac{(T - 1)(T - 2)}{6}\delta + \frac{(T - 1)(T + 1)}{6}\delta^{2} } \right) \hfill \\ & \quad - \frac{1}{2}\ln \left( {\frac{(T + 1)(2T + 1)}{6} - 2\frac{(T - 1)(T + 1)}{3}\delta + \frac{(T - 1)(2T - 1)}{6}\delta^{2} } \right). \hfill \\ \end{aligned}$$

Then, a little algebra shows:

$$\frac{{\partial {\text{E}}(\ell_{RE,i}^{c} \left( \delta \right))}}{\partial \delta } = - \frac{{\left( {\delta - 1} \right)^{3} T\left( {T + 1} \right)\left( {2T - 1} \right)}}{{\left[ {(2T - 1)\left\{ {\delta - \frac{2(T + 1)}{{2T - 1}}} \right\}^{2} + \frac{3}{2T - 1}} \right]\left[ {(T + 1)\left\{ {\delta - \frac{T - 2}{{T + 1}}} \right\}^{2} + \frac{3(T - 1)}{{T + 2}}} \right]}}.$$

Since the denominator of \(\partial {\text{E}}(\ell_{RE,i}^{c} (\delta ))/\partial \delta\) is positive for any T ≥ 2, it is positive for \(\delta < 1\) and negative for \(\delta = 1\). The derivative equals zero only at \(\delta = 1\). This indicates that \(\delta = 1\) is the global maximum point.

Proof of Proposition 4

It can be shown that when \(\theta_{o} = \theta_{*}\),

$$\begin{aligned} {\text{E}}\left( {\ell_{Lan,i} (\delta ,\nu )} \right) & = b(\delta ) - \frac{T - 1}{2}\ln (\nu ) \hfill \\ &\quad - \frac{{\nu_{*} }}{2\nu }\left( {\frac{(T - 1)(T + 1)}{6} - \frac{(T - 1)(T - 2)}{3}\delta + \frac{(T - 1)(T + 1)}{6}\delta^{2} } \right). \hfill \\ \end{aligned}$$

Without loss of generality, we set \(\nu_{*} = 1\). Then, the first-order maximization condition with respect to \(\nu\) yields

$$\nu = \frac{1}{T - 1}\left( {\frac{(T - 1)(T + 1)}{6} - \frac{(T - 1)(T - 2)}{3}\delta + \frac{(T - 1)(T + 1)}{6}\delta^{2} } \right).$$

Substituting this into the expected value of \(E(\ell_{Lan,i} (\delta ,\nu ))\), we can get

$$\begin{aligned} {\text{E}}\left( {\ell_{Lan,i}^{c} (\delta )} \right) &= b(\delta ) - \frac{T - 1}{2}\ln \left( {\frac{1}{T - 1}} \right) - \frac{T - 1}{2} \hfill \\ &\quad - \frac{T - 1}{2}\ln \left( {\frac{(T - 1)(T + 1)}{6} - \frac{(T - 1)(T - 2)}{3}\delta + \frac{(T - 1)(T + 1)}{6}\delta^{2} } \right). \hfill \\ \end{aligned}$$

If we differentiate the concentrated likelihood function, we yield.

\(\begin{aligned} \frac{{\partial {\text{E}}\left( {\ell_{Lan,i}^{c} (\delta )} \right)}}{\partial \delta } = & \, b(\delta )^{{\prime }} - \frac{{\left( {T - 1} \right)\left( {\left( {T + 1} \right)\delta - T\left( {T - 2} \right)} \right)}}{{\left( {T + 1} \right)\delta^{2} - 2T\left( {T - 2} \right)\delta + \left( {T + 1} \right)}}; \\ \frac{{\partial^{2} {\text{E}}\left( {\ell_{Lan,i}^{c} (\delta )} \right)}}{{\partial \delta^{2} }} = &\, b(\delta )^{{{\prime \prime }}} - \frac{{2\left( {T - 1} \right)\left( {T\left( {\delta - 1} \right) + \delta + 2} \right)^{2} }}{{\left( {\left( {T\left( {\delta - 2} \right) + 4 + \delta } \right)\delta + \left( {T + 1} \right)} \right)^{2} }} \\ & \quad + \frac{{\left( {T - 1} \right)\left( {T + 1} \right)}}{{\left( {\left( {T\left( {\delta - 2} \right) + 4 + \delta } \right)\delta + \left( {T + 1} \right)} \right)}}. \\ \frac{{\partial^{3} {\text{E}}\left( {\ell_{Lan,i}^{c} (\delta )} \right)}}{{\partial \delta^{3} }} = &\, b(\delta )^{{{\prime \prime \prime }}} + \frac{{8\left( {T - 1} \right)\left( {T\left( {\delta - 1} \right) + \delta + 2} \right)^{3} }}{{\left( {\left( {T\left( {\delta - 2} \right) + 4 + \delta } \right)\delta + \left( {T + 1} \right)} \right)^{3} }} \\ & \quad - \frac{{6\left( {T - 1} \right)\left( {T + 1} \right)\left( {T\left( {\delta - 1} \right) + \delta + 2} \right)}}{{\left( {\left( {T + 1} \right)\delta^{2} - 2\left( {T - 2} \right)\delta + \left( {T + 1} \right)} \right)^{2} }}. \\ \end{aligned}\)

It can be shown that when \(\delta = 1\),

\(b(1)^{{\prime }} = \frac{T - 1}{2};b(1)^{{{\prime \prime }}} = \frac{(T - 1)(T - 2)}{6};b(1)^{{{\prime \prime \prime }}} = \frac{(T - 1)(T - 2)(T - 3)}{{12}}\).

Using these results, we can easily show that at \(\delta = 1\),

$$\frac{{\partial {\text{E}}\left( {\ell_{Lan,i}^{c} (1)} \right)}}{\partial \delta } = \frac{{\partial^{2} {\text{E}}\left( {\ell_{Lan,i}^{c} (1)} \right)}}{{\partial \delta^{2} }} = 0,$$

but,

\(\frac{{\partial^{3} E\left( {\ell_{Lan,i}^{c} (1)} \right)}}{{\partial \delta^{3} }} = \frac{{\left( {T - 1} \right)\left( {T - 2} \right)\left( {T - 3} \right)}}{12} - \frac{{\left( {T - 1} \right)\left( {T + 1} \right)}}{2} \ne 0\).

Thus, \(\delta = 1\) is an inflexion point of \(\text{E}\left( {\ell_{Lan,i}^{c} (\delta )} \right)\).

Proof of Proposition 5

At \(\theta = \theta_{*}\), using the alternative representation of \([\Omega_{T} (\omega )]^{ - 1}\) given in Lemma A.2, we can have

$$\begin{aligned} \ell_{RE,i,\nu } (\theta_{*} ) & = - \frac{T}{2\nu } + \frac{1}{{2\nu^{2} }}\left( {\begin{array}{*{20}c} {\Delta y_{i1} } \\ {\Delta y_{i} - \Delta y_{i, - 1} } \\ \end{array} } \right)^{{\prime }} (L_{T}^{{\prime }} L_{T} )^{ - 1} \left( {\begin{array}{*{20}c} {\Delta y_{i1} } \\ {\Delta y_{i} - \Delta y_{i, - 1} } \\ \end{array} } \right) \hfill \\ & = - \frac{T}{2\nu } + \frac{1}{{2\nu^{2} }}r_{i}^{{\prime }} L_{T} (L_{T}^{{\prime }} L_{T} )^{ - 1} L_{T}^{{\prime }} r_{i} = - \frac{T}{2\nu } + \frac{1}{{2\nu^{2} }}\Sigma_{i} r_{i}^{{\prime }} r_{i} , \hfill \\ \end{aligned}$$

where \(r_{i} = (\Delta y_{i1} ,...,\Delta y_{iT} )^{{\prime }}\) and \(\nu = \nu_{*}\). Also, we have:

$$\begin{aligned} \ell_{RE,i,\omega } (\theta_{*} ) & = - \frac{T}{2} + \frac{{T^{2} }}{2\nu }\left( {\Delta y_{i1} + k_{T - 1}^{{\prime }} (\Delta y_{i} - \Delta y_{i, - 1} )} \right)^{2} = - \frac{T}{2} + \frac{{T^{2} }}{2\nu }\left( {\overline{k}_{T}^{{\prime }} L_{T}^{{\prime }} r_{i} } \right)^{2} \hfill \\ & = - \frac{T}{2} + \frac{{T^{2} }}{2\nu }r_{i}^{{\prime }} L_{T} \overline{k}_{T} \overline{k}_{T}^{{\prime }} L_{T}^{{\prime }} r_{i} = - \frac{T}{2} + \frac{1}{2\nu }r_{i}^{{\prime }} 1_{T} 1_{T}^{{\prime }} r_{i} . \hfill \\ \end{aligned}$$

Thus,

$$\ell_{RE,i,\omega } (\theta_{*} ) - v\ell_{RE,i,\nu } (\theta_{*} ) = - \frac{1}{2\nu }r_{i}^{{\prime }} (I_{T} - 1_{T} 1_{T}^{{\prime }} )r_{i} = \frac{1}{v}\Sigma_{s = 2}^{T} \Sigma_{t = 1}^{s - 1} \Delta y_{it} \Delta y_{is} .$$

Now,

$$\begin{aligned}\ell_{RE,i,\delta } (\theta_{*} ) &= \frac{1}{\nu } \left( {\begin{array}{*{20}c} 0 \\ {\Delta y_{i, - 1} } \\ \end{array} } \right)^{{\prime }} (L_{T}^{{\prime }} L_{T} )^{ - 1} \left( {\begin{array}{*{20}c} {\Delta y_{i1} } \\ {\Delta y_{i} - \Delta y_{i, - 1} } \\ \end{array} } \right)^{{\prime }}\\ & = \frac{1}{\nu }\left( {\begin{array}{*{20}c} 0 \\ {\Delta y_{i1} } \\ : \\ {\Sigma_{t = 1}^{T - 1} \Delta y_{it} } \\ \end{array} } \right)^{{\prime }} \left( {\begin{array}{*{20}c} {\Delta y_{i1} } \\ {\Delta y_{i2} } \\ : \\ {\Delta y_{iT} } \\ \end{array} } \right) = \frac{1}{\nu }\Sigma_{s = 2}^{T} \Sigma_{t = 1}^{s - 1} \Delta y_{it} \Delta y_{is} .\end{aligned}$$

Thus,\(\ell_{RE,i,\delta } (\theta_{*} ) - \ell_{RE,i,\omega } (\theta_{*} ) + \nu_{*} \ell_{RE,i,\nu } (\theta_{*} ) = 0.\)

Proof of Proposition 6

We first check whether (i) whether \(\tilde{\ell }_{RE,i,\delta \delta } (\theta_{*} )\) equals zero or is linearly related to \(\tilde{\ell }_{RE,i,\delta } (\theta_{*} )\) and \(s_{i,2}\). Note that

$$\tilde{\ell }_{{RE,i,\nu_{r} }} (\theta_{*} ) = \ell_{RE,i,\nu } (\theta_{*} );\tilde{\ell }_{{RE,i,\omega_{r} }} (\theta_{*} ) = \ell_{RE,i,\omega } (\theta_{*} );\tilde{\ell }_{RE,i,\psi } (\theta_{*} ) = \ell_{RE,i,\psi } (\theta_{*} ).$$

Since \(\tilde{\ell }_{RE,i} (\delta ,\nu_{r} ,\omega_{r} ,\psi ) = \ell_{RE,i} (\delta ,\nu (\nu_{r} ,\delta ),\omega (\omega_{r} ,\delta ),\psi)\), we have:

$$\begin{aligned} \widetilde{\ell }_{RE,i,\delta } & = \ell_{RE,i,\delta } - \ell_{RE,i,\omega } + \nu_{r} \ell_{RE,i,\nu } ; \hfill \\ &\quad\widetilde{\ell }_{RE,i,\delta \delta } = \ell_{RE,i,\delta \delta } - \ell_{RE,i,\delta \omega } + \nu_{r} \ell_{RE,i,\delta \nu } - \ell_{RE,i,\omega \delta } + \ell_{RE,i,\omega \omega } - \nu_{r} \ell_{RE,i,\omega \nu } \hfill \\ & \quad + \nu_{r} \left( {\ell_{RE,i,\nu \delta } - \ell_{RE,i,\nu \omega } + \nu_{r} \ell_{RE,i,\nu \nu } } \right) \hfill \\ & = \left( {\ell_{RE,i,\delta \delta } - 2\ell_{RE,i,\delta \omega } + \ell_{RE,i,\omega \omega } } \right) + 2\nu_{r} \left( {\ell_{RE,i,\delta \nu } - \ell_{RE,i,\omega \nu } } \right) + \nu_{r}^{2} \ell_{RE,i,\nu \nu } . \hfill \\ \end{aligned}$$

Then, with a little algebra and Lemma A.3, we can show that at \(\theta_{r} = \theta_{*}\),

$$\begin{aligned} \tilde{\ell }_{RE,i,\delta \delta }^{{}} (\theta_{*} ) & = \left( {\ell_{RE,i,\delta \delta } (\theta_{*} ) - 2\ell_{RE,i,\delta \omega } (\theta_{*} ) + \ell_{RE,i,\omega \omega } (\theta_{*} )} \right) \hfill \\ & \quad+ 2\nu_{*} \left( {\ell_{RE,i,\delta \nu } (\theta_{*} ) - \ell_{RE,\omega \nu } (\theta_{*} )} \right) + \nu_{*}^{2} \ell_{RE,i,\nu \nu } (\theta_{*} ) \hfill \\ & = \left( \begin{array}{l} - \frac{1}{{\nu_{*} }}\Delta y_{i, - 1}^{{\prime }} B_{T - 1}^{ - 1} \Delta y_{i, - 1} - \frac{T}{{\nu_{*} }}\Delta y_{i, - 1}^{{\prime }} k_{T - 1}^{{\prime }} k_{T - 1} \Delta y_{i, - 1} \hfill \\ + \frac{{2T^{2} }}{{\nu_{*} }}\Delta y_{i, - 1}^{{\prime }} k_{T - 1} (\Delta y_{i1} + k_{T - 1}^{{\prime }} (\Delta y_{i} - \Delta y_{i, - 1} )) - \frac{{T^{3} }}{{\nu_{*} }}\left( {\Delta y_{i1} + k_{T - 1}^{{\prime }} (\Delta y_{i} - \Delta y_{i, - 1} )} \right)^{2} \hfill \\ \end{array} \right) \hfill \\ & \quad + \frac{T(T + 1)}{2} \hfill \\ & = \left( { - \frac{1}{{\nu_{*} }}\Delta y_{i, - 1}^{{\prime }} \left( {\tilde{D}_{T}^{\prime } \tilde{D}_{T} } \right)^{ - 1} \Delta y_{i, - 1} - \frac{2T}{{\nu_{*} }}\Delta y_{i, - 1}^{{\prime }} m_{T - 1} (\Delta y_{iT} ) - \frac{T}{{\nu_{*} }}(\Delta y_{iT} )^{2} } \right) + \frac{T(T + 1)}{2}, \hfill \\ \end{aligned}$$

which is neither zero, nor a linear combination of \(\tilde{\ell }_{RE,i,\delta } (\theta_{*})\) and \(s_{i,2}\).

We now check (ii) whether \(\tilde{\ell }_{RE,i,\delta \delta \delta } (\theta_{*} )\) is a linear function of \(s_{i}\). We can show

$$\begin{aligned} \widetilde{\ell }_{RE,i,\delta \delta \delta } &= \left( {\ell_{RE,i,\delta \delta \delta } - 3\ell_{RE,,\delta \delta \omega } + 3\ell_{RE,i,\omega \omega \omega } - \ell_{RE,i,\omega \omega \omega } } \right) \hfill \\ & \quad+ 3\nu_{r} \left( {\ell_{RE,.i,\delta \delta \nu } - 2\ell_{RE,i,\delta \omega \omega \nu } + \ell_{RE,i,\omega \omega \nu } } \right)\\ &\quad + 3\nu_{r}^{2} \left( {\ell_{RE,i,\delta \nu \nu } - \ell_{RE,i,\omega \nu \nu } } \right) + \nu_{r}^{3} \left( {\ell_{RE,i,\nu \nu \nu } } \right). \hfill \\ \end{aligned}$$

But, at \(\theta = \theta_{*}\),

$$\begin{aligned} \ell_{RE,i,\delta \delta \delta }^{{}} (\theta_{*} ) &= 0;\,\ell_{RE,i,\delta \delta \omega }^{{}} = \frac{{T^{2} }}{{\nu_{*} }}\Delta y_{i, - 1}^{{\prime }} k_{T - 1} k_{T - 1}^{{\prime }} \Delta y_{i, - 1} ; \hfill \\ \ell_{RE,i,\omega \omega \delta } (\theta_{*} ) &= \frac{{2T^{3} }}{{\nu_{*} }}\Delta y_{i, - 1}^{{\prime }} k_{T - 1} \left( {\Delta y_{i1} + k_{T}^{{\prime }} (\Delta y_{i} - \Delta y_{i, - 1} )} \right); \hfill \\ \ell_{RE,i,\omega \omega \omega } (\theta_{*} ) & = - T^{3} + \frac{{3T^{4} }}{{\nu_{*} }}(\Delta y_{i1} + k_{T - 1}^{{\prime }} (\Delta y_{i} - \Delta y_{i, - 1} ))^{2} ; \hfill \\ \ell_{RE,i,\delta \delta \nu } (\theta_{*} ) &= - \frac{1}{{\nu_{*} }}\ell_{RE,i,\delta \delta } (\theta_{*} );\,\ell_{RE,i,\delta \omega \nu } (\theta_{*} ) = - \frac{1}{{\nu_{*} }}\ell_{RE,i,\delta \omega } (\theta_{*} ); \hfill \\ \ell_{RE,i,\omega \omega \nu } (\theta_{*} ) &= - \frac{1}{{\nu_{*} }}\ell_{RE,i,\omega \omega } (\theta_{*} ) + \frac{{T^{2} }}{{2\nu_{*} }};\,\ell_{RE,i,\delta \nu \nu } (\theta_{*} ) = - \frac{2}{{\nu_{*} }}\ell_{RE,i,\delta \nu } (\theta_{*} ); \hfill \\ \ell_{RE,i,\nu \nu \omega } (\theta_{*} ) &= - \frac{2}{{\nu_{*} }}\ell_{RE,i,\nu \omega } (\theta_{*} );\,\ell_{RE,i,\nu \nu \nu } (\theta_{*} ) = - \frac{3}{{\nu_{*} }}\ell_{RE,i,\nu \nu } (\theta_{*} ) + \frac{T}{{2\nu_{*}^{3} }}. \hfill \\ \end{aligned}$$

Using these results, we can show:

$$\begin{aligned} \tilde{\ell }_{RE,i,\delta \delta \delta }^{{}} (\theta_{*} ) & = \frac{{2T^{3} + 3T^{2} + T}}{2} - \frac{{3T^{2} }}{{\nu_{*} }}\Delta y_{i, - 1}^{{\prime }} m_{T - 1} m_{T - 1}^{^{\prime}} \Delta y_{i, - 1} \hfill \\ & \quad - \frac{{6T^{2} }}{{\nu_{*} }}(m_{T - 1}^{{\prime }} \Delta y_{i, - 1} )\Delta y_{iT} - \frac{{3T^{2} }}{{\nu_{*} }}(\Delta y_{iT} )^{2} - 3\tilde{\ell }_{RE,i,\delta \delta } (\theta_{*} ), \hfill \\ \end{aligned}$$

which is neither zero, nor a linear combination of \(s_{i}\). For example, when T = 2:

$$\begin{aligned} \tilde{\ell }_{RE,i,\delta \delta \delta } (\theta_{*} ) & = 15 - \frac{3}{{\nu_{*} }}\left( {\Delta y_{i1} } \right)^{2} - \frac{12}{{\nu_{*} }}\Delta y_{i1} \Delta y_{i2} - \frac{12}{{\nu_{*} }}(\Delta y_{i2} )^{2} - 3\tilde{\ell }_{RE,i,\delta \delta } (\theta_{*} ); \hfill \\ \tilde{\ell }_{RE,i,\delta \delta } (\theta_{*} ) &= \left( { - \frac{1}{{\nu_{*} }}\left( {\Delta y_{i1} } \right)^{2} - \frac{2}{{\nu_{*} }}\Delta y_{i1} \Delta y_{i2} - \frac{2}{{\nu_{*} }}(\Delta y_{i2} )^{2} } \right) + 3; \hfill \\ \tilde{\ell }_{{RE,i,\nu_{r} }} (\theta_{*} ) &= \ell_{RE,i,\nu } (\theta_{*} ) = - \frac{1}{{\nu_{*} }} + \frac{1}{{2\nu_{*}^{2} }}\left( {(\Delta y_{i1} )^{2} + (\Delta y_{i2} )^{2} } \right) \hfill \\ \tilde{\ell }_{{RE,i,\omega_{r} }} (\theta_{*} ) &= \ell_{RE,i,\omega } (\theta_{*} ) = - 1 + \frac{1}{{2\nu_{*} }}(\Delta y_{i1} + \Delta y_{i2} )^{2} ; \hfill \\ \tilde{\ell }_{{RE,i,\psi_{r} }} (\theta_{*} ) &= \ell_{RE,i,\psi } (\theta_{*} ) = \frac{1}{{\nu_{*} }}y_{i0} \left( {\Delta y_{i1} + \Delta y_{i2} } \right). \hfill \\ \end{aligned}$$

All these derivatives are linearly independent.

We now consider the asymptotic distribution of the ML estimator of \(\theta_{r}\). Let \(L_{N} (\theta_{r})\) = \(\Sigma_{i = 1}^{N} \tilde{\ell }_{RE,i} (\theta_{r} ),\) where \(\theta_{r} = (\delta ,\varphi^{\prime}_{r} )^{\prime}.\) For convenience, redefine \(\varphi_{r}\) as \(\varphi_{r} = (\omega_{r} ,\psi ,\nu_{r} )^{\prime}\) instead of \((\nu_{r} ,\omega_{r} ,\psi )^{\prime}\). Correspondingly, we also reorder \(s_{i,2}\) and \(Z_{2}\). Partition \(Z_{2}\) into \(Z_{2} = (Z_{21} ,Z_{22} )^{\prime}\), where \(Z_{21}\) is a 2 × 1 vector and \(Z_{22}\) is a scalar. We also partition \(\Upsilon\) and \(\Upsilon^{ - 1}\), accordingly:

$$\begin{aligned} \Upsilon &= \left( {\begin{array}{*{20}c} {\Upsilon_{11}^{{}} } & {\Upsilon_{21}^{\prime } } \\ {\Upsilon_{21} } & {\Upsilon_{22} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\Upsilon_{11} } & {\Upsilon_{21,1}^{\prime } } & {\Upsilon_{22,1}^{\prime } } \\ {\Upsilon_{21,1} } & {\Upsilon_{21,21} } & {\Upsilon_{22,21}^{\prime } } \\ {\Upsilon_{22,1} } & {\Upsilon_{22,21} } & {\Upsilon_{22,22} } \\ \end{array} } \right);\,\Upsilon^{ - 1} = \left( {\begin{array}{*{20}c} {\Upsilon^{11} } & {(\Upsilon^{21} )^{\prime } } \\ {\Upsilon^{21} } & {\Upsilon^{22} } \\ \end{array} } \right)\\ &= \left( {\begin{array}{*{20}c} {\Upsilon^{11} } & {\Upsilon^{21,1 \prime } } & {\Upsilon^{22,1\prime } } \\ {\Upsilon^{21,1} } & {\Upsilon^{21,21} } & {(\Upsilon^{22,21} )^{\prime } } \\ {\Upsilon_{22,1} } & {\Upsilon_{22,21} } & {\Upsilon^{22,22} } \\ \end{array} } \right).\end{aligned}$$

Given the conditions (i) – (ii) are satisfied, Theorem 3 of RCBR implies that in the bounded neighborhood of \(\theta_{*}\), the log-likelihood function can be approximated by:

$$\begin{aligned} L_{N} (\theta_{r} ) &= L_{N} (\theta_{*} ) + N^{1/2} \left( {\begin{array}{*{20}c} {(\delta - 1)^{2} } \\ {\varphi_{r} - \varphi^{*} } \\ \end{array} } \right)^{\prime } \Upsilon \left( {\begin{array}{*{20}c} {Z_{1} } \\ {Z_{2} } \\ \end{array} } \right) - \frac{1}{2}N\left( {\begin{array}{*{20}c} {(\delta - 1)^{2} } \\ {\varphi_{r} - \varphi^{*} } \\ \end{array} } \right)^{\prime } \Upsilon \left( {\begin{array}{*{20}c} {(\delta - 1)^{2} } \\ {\varphi_{r} - \varphi^{*} } \\ \end{array} } \right) + o_{p} (1) \hfill \\ & = L_{N} (\theta_{*} ) + N^{1/2} \left( {\begin{array}{*{20}c} {(\delta - 1)^{2} } \\ {\varphi_{r} - \varphi^{*} } \\ \end{array} } \right)^{\prime } (\Upsilon^{ - 1} )^{ - 1} \left( {\begin{array}{*{20}c} {Z_{1} } \\ {Z_{2} } \\ \end{array} } \right)\\ &\quad - \frac{1}{2}N\left( {\begin{array}{*{20}c} {(\delta - 1)^{2} } \\ {\varphi_{r} - \varphi^{*} } \\ \end{array} } \right)^{\prime } (\Upsilon^{ - 1} )^{ - 1} \left( {\begin{array}{*{20}c} {(\delta - 1)^{2} } \\ {\varphi_{r} - \varphi^{*} } \\ \end{array} } \right) + o_{p} (1) \hfill \\ \end{aligned}$$
(36)

Suppose that \(Z_{1} > 0\). Then, it is straightforward to show that the ML estimator of \(\theta_{r}\) equals

$$\left( {\begin{array}{*{20}c} {N^{1/2} (\hat{\delta } - 1)^{2} } \\ {N^{1/2} (\hat{\varphi }_{r} - \varphi^{*} )} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {Z_{1} } \\ {Z_{2} } \\ \end{array} } \right) + o_{p} (1).$$

That is,

$$\left( {\begin{array}{*{20}c} {N^{1/4} (\hat{\delta } - 1)} \\ {N^{1/2} (\hat{\varphi }_{r} - \varphi^{*} )} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {( - 1)^{B} \sqrt {Z_{1} } } \\ {Z_{2} } \\ \end{array} } \right) + o_{p} (1).$$
(37)

This is so because the solution for \(N^{1/4} (\hat{\delta } - 1)\) has two solutions and both solutions have equal chances. Now, suppose \(Z_{1} < 0\). Then, we do not have an interior solution for \(N^{1/2} (\hat{\delta } - 1)^{2} > 0\). The corner solution for \(N^{1/2} (\hat{\delta } - 1)^{2}\) equals zero. For this case, we have:

$$\left( {\begin{array}{*{20}c} {N^{1/4} (\hat{\delta } - 1)} \\ {N^{1/2} (\hat{\varphi }_{r} - \varphi^{*} )} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} 0 \\ {Z_{2} - \Upsilon^{21} (\Upsilon^{11} )^{ - 1} Z_{1} } \\ \end{array} } \right) + o_{p} (1).$$
(38)

Thus, we obtain (17).

We now derive the asymptotic distributions of LR test statistics. Substituting (37) and (38) into (36), we have:

$$2[L_{N} (\hat{\theta }_{r} ) - L_{N} (\theta_{*} )] = 1(Z_{1} > 0) \times Z^{\prime}(\Upsilon^{ - 1} )^{ - 1} Z + 1(Z_{2} < 0) \times Z_{2}^{{*{\prime }}} \Upsilon_{22} Z_{2}^{*} ,$$
(39)

where 1(·) is the index function,\(\Upsilon_{22} = [\Upsilon^{22} - \Upsilon^{21} (\Upsilon^{11} )^{ - 1} \Upsilon^{12} ]^{ - 1}\) and \(Z_{2}^{*} = Z_{2} - \Upsilon^{21} (\Upsilon^{11} )^{ - 1} Z_{1}\).

A tedious algebra shows:

$$\begin{aligned} Z(\Upsilon^{ - 1} )^{ - 1} Z &= {\text{Z}}_{{1}}^{\prime } (\Upsilon^{11} )^{ - 1} Z_{1} + Z_{2}^{*\prime } \Upsilon_{22} Z_{2}^{*} \hfill \\ & = {\text{Z}}_{{1}}^{\prime } (\Phi_{11} )^{ - 1} Z_{1} + Z_{21}^{**\prime } (\Phi_{21,21} )^{ - 1} Z_{21}^{**} + Z_{22}^{*\prime}(\Phi_{22,22} )^{ - 1} Z_{22}^{**} , \hfill \\ \end{aligned}$$
(40)

where \(\Phi_{11} = \Upsilon^{11}\),\(\Phi_{21,21} = \Upsilon^{21,21} - \Upsilon^{21,1} (\Upsilon^{11} )^{ - 1} \Upsilon^{21,1\prime }\),\(Z_{21}^{**} = Z_{21} - \Upsilon^{21,1} (\Upsilon^{11} )^{ - 1} Z_{1}\),

$$\begin{aligned} \Phi_{22,22} & = \Upsilon^{22,22} - \left( {\begin{array}{*{20}c} {\Upsilon^{22,1} } & {\Upsilon^{22,21} } \\ \end{array} } \right) \left( {\begin{array}{*{20}c} {\Upsilon^{11} } & {\Upsilon^{21,1\prime } } \\ {\Upsilon^{21,1} } & {\Upsilon^{21,21} } \\ \end{array} } \right)^{ - 1} \left( {\begin{array}{*{20}c} {\Upsilon^{{22,1{\prime }}} } \\ {\Upsilon^{{22,21{\prime }}} } \\ \end{array} } \right); \hfill \\ Z_{22}^{**} &= Z_{22} - \left( {\begin{array}{*{20}c} {\Upsilon^{22,1} } & {\Upsilon^{22,21} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\Upsilon^{11} } & {\Upsilon^{21,1\prime } } \\ {\Upsilon^{21,1} } & {\Upsilon^{21,21} } \\ \end{array} } \right)^{ - 1} \left( {\begin{array}{*{20}c} {Z_{1} } \\ {Z_{21} } \\ \end{array} } \right). \hfill \\ \end{aligned}$$

Notice that \(Z_{1}\),\(Z_{21}^{**}\) and \(Z_{22}^{**}\) are uncorrelated, and

$$Z_{1} \sim N(0,\Phi_{11} );\,Z_{21}^{**} \sim N(0,\Upsilon_{21,21} );\,Z_{22}^{**} \sim N(0,\Upsilon_{22,22} ).$$
(41)

Using (40), we can rewrite (39) as:

$$\begin{aligned} 2[L_{N} (\hat{\theta }_{r} ) - L_{N} (\theta_{*} )] & = 1(Z_{1} > 0) \times (Z_{1}^{\prime } \Phi_{11}^{ - 1} Z_{1} + Z_{21}^{**\prime } \Phi_{21,21}^{ - 1} Z_{21}^{**} + Z_{22}^{**\prime } \Phi_{22,22}^{ - 1} Z_{22}^{**} ) \hfill \\ &\quad + 1(Z_{1} < 0) \times (Z_{21}^{**\prime } \Phi_{21,21}^{ - 1} Z_{21}^{**} + Z_{22}^{**\prime } \Phi_{22,22}^{ - 1} Z_{22}^{**} ). \hfill \\ \end{aligned}$$
(42)

Let \(\tilde{\theta }_{r} = (1,1,0,\tilde{\nu })^{\prime}\) be the restricted ML estimator of \(\theta_{r}\) which maximizes (36) with the restrictions,\(\delta = 1\) and \(\omega = \psi = 0\). It can be shown that:

$$N^{1/2} (\tilde{\nu } - \nu_{*} ) = Z_{22}^{**} + o_{p} (1).$$

Substituting this solution into (36), we can have

$$\begin{aligned} 2[L_{N} (\tilde{\theta }_{r} ) - L_{N} (\theta_{*} )] & = 2N^{1/2} \left( {\begin{array}{*{20}c} 0 \\ {0_{2 \times 1} } \\ {\tilde{\nu } - \nu_{*} } \\ \end{array} } \right)^{\prime } \Upsilon \left( {\begin{array}{*{20}c} {Z_{1} } \\ {Z_{21} } \\ {Z_{22} } \\ \end{array} } \right)\\ &\quad - N\left( {\begin{array}{*{20}c} 0 \\ {0_{2 \times 1} } \\ {\tilde{\nu } - \nu *} \\ \end{array} } \right)^{\prime } \Upsilon \left( {\begin{array}{*{20}c} 0 \\ {0_{2 \times 1} } \\ {\tilde{\nu } - \nu *} \\ \end{array} } \right) + o_{p} (1) \hfill \\ & = Z_{22}^{**\prime } \Phi_{22,22}^{ - 1} Z_{22}^{**} + o_{p} (1) \hfill \\ \end{aligned}$$
(43)

Using (41)-(43), we can show that when \(\theta_{r,o} = \theta_{*}\), the LR test statistic for testing the joint hypotheses of \(\delta_{o} = 1\),\(\omega_{r,o} = 0\), and \(\psi_{o} = 0\) follows a mixed Chi-square distribution:

$$\begin{aligned} & 2[L_{N} (\hat{\theta }_{r} ) - L_{N} (\tilde{\theta }_{r} )] = 1(Z_{1} > 0) \times (Z_{1}^{\prime } (\Phi_{11} )^{ - 1} Z_{1} + Z_{21}^{**\prime } (\Phi_{21,21} )^{ - 1} Z_{21}^{**} ) \hfill \\ & \quad + 1(Z_{1} < 0) \times (Z_{21}^{**\prime } (\Phi_{21,21} )^{ - 1} Z_{21}^{**} ) + o_{p} (1) \hfill \\ & \to_{d} B \times \chi^{2} (3) + (1 - B) \times \chi^{2} (2). \hfill \\ \end{aligned}$$

Finally, consider the LR statistic for testing the hypothesis of \(\delta_{o} = 1\). Let \({\mathop{\theta }\limits^{\frown}}_{r} = (1,{{\mathop{\varphi }\limits^{\frown}}^{\prime}}_{r} )^{\prime}\) be restricted ML estimator that maximize (36) with the restriction \(\delta_{o} = 1\). We can show that

$$N^{1/2} ({\mathop{\varphi }\limits^{\frown}}_{r} - \varphi_{*} ) = Z_{2}^{*} + o_{p} (1).$$

Substituting this solution into (3) yields:

$$\begin{aligned} 2[L_{N} (\tilde{\theta }_{r} ) - L_{N} (\theta_{*} )] &= 2\sqrt N \left( {\begin{array}{*{20}c} 0 \\ {{\mathop{\varphi }\limits^{\frown}}_{r} - \varphi_{*} } \\ \end{array} } \right)^{\prime } \Upsilon \left( {\begin{array}{*{20}c} {Z_{1} } \\ {Z_{2} } \\ \end{array} } \right)\\ &\quad- N\left( {\begin{array}{*{20}c} 0 \\ {{\mathop{\varphi }\limits^{\frown}}_{r} - \varphi_{*} } \\ \end{array} } \right)^{\prime } \Upsilon \left( {\begin{array}{*{20}c} 0 \\ {{\mathop{\varphi }\limits^{\frown}}_{r} - \varphi_{*} } \\ \end{array} } \right) + o_{p} (1) \hfill \\ & = Z_{2}^{*\prime } \Upsilon_{22} Z_{2}^{*} + o_{p} (1) = Z_{21}^{**\prime } \Phi_{21,21}^{ - 1} Z_{21}^{**} + Z_{22}^{**\prime } \Phi_{22,22}^{ - 1} Z_{22}^{**} + o_{p} (1) \hfill \\ \end{aligned}$$
(44)

Then, using (41), (42) and (44), we have:

$$2[L_{N} (\hat{\theta }_{r} ) - L_{N} ({\mathop{\theta }\limits^{\frown}}_{r} )] = 1(Z_{1} > 0) \times Z_{1}^{\prime } \Phi_{11}^{ - 1} Z_{1} + o_{p} (1) \to_{d} B\chi^{2} (1).$$

This completes our proof.

Proof of Proposition 7

It is easy to see that \((\ell_{RE,i,\delta }^{D} (\phi_{*}^{D} ) - a_{*} \ell_{RE,i,\beta }^{D} (\phi_{*}^{D} ))\),\(\ell_{RE,i,\nu }^{D} (\phi_{*}^{D})\), and \(\ell_{RE,i,\omega }^{D} (\phi_{*}^{D} )\) are the same as \(\ell_{RE,i,\delta } (\theta_{*})\),\(\ell_{RE,i,\nu } (\theta_{*})\), and \(\ell_{RE,i,\omega }^{{}} (\theta_{*} )\) with the \(\Delta y_{it}\) replaced by \(\Delta y_{it} - a\). Thus, we can obtain the result by the same method used for Propositions 5.

Proof of Proposition 8

Define

$$L_{T}^{HD\prime } = \left( {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & {...} & 0 \\ { - 1} & 1 & 0 & 0 & {...} & 0 \\ 1 & { - 2} & 1 & 0 & {...} & 0 \\ 0 & 1 & { - 2} & 1 & {...} & 0 \\ : & : & : & : & {} & : \\ 0 & 0 & 0 & 0 & {...} & 1 \\ \end{array} } \right)_{T \times T} ;\,J_{T} = \left( {\begin{array}{*{20}c} {I_{2} } \\ {0_{(T - 2) \times 2} } \\ \end{array} } \right);\,G_{T} = \left( {\begin{array}{*{20}c} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ : & : \\ 1 & {T - 1} \\ \end{array} } \right),$$

We can easily show that \(G = (L_{T}^{HD\prime } )^{ - 1} J_{T}\) and \(\Omega_{T}^{HD} (W) = L_{T}^{HD\prime } L_{T}^{HD} + J_{T} WJ^{\prime}_{T}\). Let

$$\left( {\begin{array}{*{20}c} {g_{11} } & {g_{12} } \\ {g_{12} } & {g_{22} } \\ \end{array} } \right) \equiv G^{\prime}_{T} G_{T} = \left( {\begin{array}{*{20}c} T & {\frac{T(T - 1)}{2}} \\ {\frac{T(T - 1)}{2}} & {\frac{T(T - 1)(2T - 1)}{6}} \\ \end{array} } \right).$$

Then, we have:

$$\begin{aligned} (\Omega_{T}^{HD} )^{ - 1} & = \left[ {L_{T}^{HD\prime } L_{T}^{HD} + J_{T} WJ^{\prime}_{T} } \right]^{ - 1} \hfill \\ & = \left( {L_{T}^{HD\prime } L_{T}^{HD} } \right)^{ - 1} - (L_{T}^{HD\prime } L_{T}^{HD} )^{ - 1} J_{T} W[J^{\prime}_{T} (L_{T}^{HD\prime } L_{T}^{HD} )^{ - 1} J_{T} W + I_{2} ]^{ - 1} J^{\prime}_{T} (L_{T}^{HD\prime } L_{T}^{HD} )^{ - 1} \hfill \\ & = (L_{T}^{HD} )^{ - 1} (L_{T}^{HD\prime } )^{ - 1} - (L_{T}^{HD} )^{ - 1} G_{T} W[G^{\prime}_{T} G_{T} W + I_{2} ]^{ - 1} G^{\prime}_{T} (L_{T}^{HD\prime } )^{ - 1} . \hfill \\ \end{aligned}$$

Thus, the log-likelihood function can be written:

$$\begin{aligned} \ell_{RE,i}^{HD} & = - \frac{1}{2}\ln (2\pi ) - \frac{T}{2}\ln (\nu ) - \frac{1}{2}\ln [\det (L_{T}^{HD\prime } L_{T}^{HD} + J_{T} WJ^{\prime}_{T} )] \hfill \\ & \quad - \frac{1}{2\nu }\left( {\begin{array}{*{20}c} {\Delta y_{i1} - a_{1} - \psi_{1} y_{i0} } \\ {\Delta y_{i2} - a_{2} - \psi_{2} y_{i0} - \Delta y_{i1} \delta } \\ {\Delta^{2} y_{i} - \Delta^{2} y_{i, - 1} \delta } \\ \end{array} } \right)^{\prime } (L_{T}^{HD\prime } L_{T}^{HD}\\ &\quad + J_{T} WJ^{\prime}_{T} )^{ - 1} \left( {\begin{array}{*{20}c} {\Delta y_{i1} - a_{1} - \psi_{1} y_{i0} } \\ {\Delta y_{i2} - a_{2} - \psi_{2} y_{i0} - \Delta y_{i1} \delta } \\ {\Delta^{2} y_{i} - \Delta^{2} y_{i, - 1} \delta } \\ \end{array} } \right) \hfill \\ \end{aligned}$$

Define \(d_{it} = \Delta y_{it} - a_{1,*} - \psi_{1,*} y_{i0}\). By a tedious but straightforward algebra, we can show at \(\phi^{HD} = \phi_{*}^{HD}\):

$$\begin{gathered} \ell_{RE,i,\delta }^{HD} = \frac{1}{\nu }\Sigma_{t = 1}^{T - 1} \Sigma_{s = 1}^{t} \Delta y_{is} d_{i,t + 1} - \frac{{\omega_{11}^{{}} }}{{\nu (g_{11} \omega_{11}^{{}} + 1)}}(\Sigma_{t = 1}^{T - 1} (T - t)\Delta y_{it} )\Sigma_{t = 1}^{T} d_{it} ; \hfill \\ \ell_{{RE,i,a_{2} }}^{HD} = \frac{1}{\nu }\Sigma_{t = 2}^{T} (t - 1)d_{it} - \frac{{w_{11} }}{{\nu (g_{11} \omega_{11}^{{}} + 1)}}\frac{T(T - 1)}{2}\Sigma_{t = 1}^{T} d_{it} ; \hfill \\ \ell_{{RE,i,\psi_{2} }}^{HD} = \frac{1}{\nu }\Sigma_{t = 2}^{T} (t - 1)d_{it} y_{i0} - \frac{{w_{11}^{{}} }}{{\nu (g_{11} \omega_{11}^{{}} + 1)}}\frac{T(T - 1)}{2}\Sigma_{t = 1}^{T} d_{it} y_{i0} , \hfill \\ \end{gathered}$$

where \(\nu = \nu_{*}\) and \(\omega_{11}^{{}} = \omega_{11,*}^{{}}\). Thus, we have:

$$\begin{aligned}&\ell_{RE,i,\delta }^{HD} - a_{1} \ell_{{RE,i,a_{2} }}^{HD} - \psi_{1} \ell_{{RE,i,\psi_{2} }}^{HD}\\ &\quad = \frac{1}{\nu }\Sigma_{t = 1}^{T - 1} \Sigma_{s = 1}^{t} d_{i,s} d_{i,t + 1} - \frac{{\omega_{11}^{{}} }}{{\nu (g_{11} \omega_{11}^{{}} + 1)}}(\Sigma_{t = 1}^{T - 1} (T - t)d_{it} )(\Sigma_{t = 1}^{T} d_{it} ). \end{aligned}$$

We also can show:

$$\begin{aligned} \ell_{RE,i,\nu }^{HD} & = - \frac{T}{2\nu } + \frac{1}{{2\nu^{2} }}\Sigma_{t = 1}^{T} d_{it}^{2} - \frac{{\omega_{11}^{{}} }}{{2\nu^{2} (g_{11} \omega_{11}^{{}} + 1)}}(\Sigma_{t = 1}^{T} d_{it} )^{2} ; \hfill \\ \ell_{{RE,i,\omega_{11}}}^{HD} &= - \frac{1}{2}\frac{{g_{11} }}{{g_{11} \omega_{11}^{{}} + 1}} - \frac{{g_{11} \omega_{11}^{{}} }}{{2\nu (g_{11} \omega_{11}^{{}} + 1)^{2} }}(\Sigma_{t = 1}^{T} d_{it} )^{2}\\ &\qquad + \frac{1}{{2\nu (g_{11} \omega_{11}^{{}} + 1)}}(\Sigma_{t = 1}^{T} d_{it} )^{2} ; \hfill \\ \ell_{{RE,i,\omega_{12}}}^{HD} &= - \frac{{g_{12} }}{{(g_{11} \omega_{11}^{{}} + 1)}} - \frac{{g_{12} \omega_{11}^{{}} }}{{\nu (g_{11} \omega_{11}^{{}} + 1)^{2} }}(\Sigma_{t = 1}^{T} d_{it} )^{2}\\& \qquad+ \frac{1}{{\nu (g_{11} \omega_{11}^{{}} + 1)}}(\Sigma_{t = 1}^{T} d_{it} )(\Sigma_{t = 1}^{T - 1} td_{i,t + 1} ). \hfill \\ \end{aligned}$$

But,

$$\begin{aligned} & \ell_{RE,i,\delta }^{HD} + \nu \ell_{RE,i,\nu }^{HD} - (g_{11} \omega_{11} + 1)\ell_{{RE,i,\omega_{11}}}^{HD} \hfill \\ & \quad = \frac{1}{2\nu }\left[ \begin{array}{l} \Sigma_{t = 1}^{T} d_{it}^{2} + 2\Sigma_{t = 1}^{T} \Sigma_{s = 1}^{t - 1} d_{is} d_{it} \hfill \\ - (\Sigma_{t = 1}^{T} d_{it} )^{2} \hfill \\ \end{array} \right] - \frac{{\omega_{11} \left( {\Sigma_{t = 1}^{T - 1} (T - t)d_{it} } \right)\left( {\Sigma_{t = 1}^{T} d_{it} } \right)}}{{\nu (g_{11} \omega_{11} + 1)}}\\ &\qquad + \frac{{(g_{11} - 1)\omega_{11}^{{}} \left( {\Sigma_{t = 1}^{T} d_{it} } \right)^{2} }}{{2\nu (g_{11} \omega_{11}^{{}} + 1)}} \hfill \\ & \quad = - \frac{{\omega_{11} \left( {\Sigma_{t = 1}^{T - 1} (T - t)d_{it} } \right)\left( {\Sigma_{t = 1}^{T} d_{it} } \right)}}{{\nu (g_{11} \omega_{11}^{{}} + 1)}} + \frac{{(g_{11} - 1)\omega_{11}^{{}} \left( {\Sigma_{t = 1}^{T} d_{it} } \right)^{2} }}{{2\nu (g_{11} \omega_{11}^{{}} + 1)}} \hfill \\ &\quad = - \frac{{\omega_{11} \left( {(T - 1)\Sigma_{t = 1}^{T} d_{it} - \Sigma_{t = 1}^{T} (t - 1)d_{it} } \right)\left( {\Sigma_{t = 1}^{T} d_{it} } \right)}}{{\nu (g_{11} \omega_{11} + 1)}} + \frac{{(g_{11} - 1)\omega_{11}^{{}} \left( {\Sigma_{t = 1}^{T} d_{it} } \right)^{2} }}{{2\nu (g_{11} \omega_{11} + 1)}} \hfill \\ &\quad = - \frac{{(T - 1)\omega_{11} \left( {\Sigma_{t = 1}^{T} d_{it} } \right)^{2} }}{{\nu (g_{11} \omega_{11} + 1)}} + \frac{{\omega_{11} \left( {\Sigma_{t = 1}^{T} (t - 1)d_{it} } \right)\left( {\Sigma_{t = 1}^{T} d_{it} } \right)}}{{\nu (g_{11} \omega_{11} + 1)}}\\ &\qquad + \frac{{(g_{11} - 1)\omega_{11} \left( {\Sigma_{t = 1}^{T} d_{it} } \right)^{2} }}{{2\nu (g_{11} \omega_{11} + 1)}} \hfill \\ & \quad = - \frac{{(T - 1)\omega_{11} }}{{2\nu (T\omega_{11}^{{}} + 1)}}\left( {\Sigma_{t = 1}^{T} d_{it} } \right)^{2} + \frac{{\omega_{11}^{{}} }}{{\nu (T\omega_{11}^{{}} + 1)}}\left( {\Sigma_{t = 1}^{T} (t - 1)d_{it} } \right)\left( {\Sigma_{t = 1}^{T} d_{it} } \right), \hfill \\ \end{aligned}$$

where the last equality results from g11 = T. Now observe that:

$$\begin{aligned}(T - 1)\ell_{{RE,i,\omega_{11}}}^{HD} - \ell_{{RE,i,\omega_{12}}}^{HD} &= \frac{(T - 1)}{{2\nu (T\omega_{11}^{{}} + 1)}}\left( {\Sigma_{t = 1}^{T} d_{it} } \right)^{2}\\ &\quad - \frac{1}{{\nu (T\omega_{11}^{{}} + 1)}}\left( {\Sigma_{t = 1}^{T} d_{it} } \right)\left( {\Sigma_{t = 1}^{T} (t - 1)d_{it} } \right). \end{aligned}$$

Thus, we have:

$$\begin{aligned} & \ell_{RE,i,\delta }^{HD} + \nu \ell_{RE,i,\nu }^{HD} - (T\omega_{11} + 1)\ell_{{RE,i,\omega_{11}}}^{HD} + \omega_{11} [(T - 1)\ell_{{RE,i,\omega_{11}}}^{HD} - \ell_{{RE,i,\omega_{12}}}^{HD} ] \hfill \\ & \quad = \ell_{RE,i,\delta }^{HD} + \nu \ell_{RE,i,\nu }^{HD} - (\omega_{11} + 1)\ell_{{RE,i,\omega_{11}}}^{HD} - \omega_{11} \ell_{{RE,i,\omega_{12}}}^{HD} = 0. \hfill \\ \end{aligned}$$

An alternative representation of the log-likelihood function (26) is given:

$$\begin{aligned} \ell_{RE,i}^{HD} & = - \frac{1}{2}\ln (2\pi ) - \frac{1}{2}\ln [\det (B_{T - 2}^{HD} )] - \frac{T}{2}\ln (\nu ) - \frac{1}{2}\ln [\det (\Xi )] \hfill \\ & \qquad- \frac{1}{2\nu }(\Delta^{2} y_{i} - \Delta^{2} y_{i, - 1} \delta )^{\prime}(B_{T - 2}^{HD} )^{ - 1} (\Delta^{2} y_{i} - \Delta^{2} y_{i, - 1} \delta ) \hfill \\ &\qquad + \frac{1}{2\nu }\left( {\left( {\begin{array}{*{20}c} {\Delta y_{i1} - a_{1} - \psi_{1} y_{i0} } \\ {\Delta y_{i2} - a_{2} - \psi_{2} y_{i0} - \delta \Delta y_{i1} } \\ \end{array} } \right) + K_{T - 2}^{HD\prime } (\Delta^{2} y_{i} - \Delta^{2} y_{i, - 1} \delta )} \right)^{\prime } \hfill \\ & \qquad \times \Xi^{ - 1} \left( {\left( {\begin{array}{*{20}c} {\Delta y_{i1} - a_{1} - \psi_{1} y_{i0} } \\ {\Delta y_{i2} - a_{2} - \psi_{2} y_{i0} - \delta \Delta y_{i1} } \\ \end{array} } \right) + K_{T - 2}^{HD\prime } (\Delta^{2} y_{i} - \Delta^{2} y_{i, - 1} \delta )} \right), \hfill \\ \end{aligned}$$

where

$$\begin{gathered} C_{T - 2}^{HD} = \left( {\begin{array}{*{20}c} { - 1} & 3 \\ 0 & { - 1} \\ 0 & 0 \\ : & : \\ 0 & 0 \\ \end{array} } \right)_{{\left( {T - 2} \right)x2}} ;\,B_{T - 2}^{HD} = \left( {\begin{array}{*{20}c} 6 & { - 4} & 1 & 0 & {...} & 0 \\ { - 4} & 6 & { - 4} & 1 & {...} & 0 \\ 1 & { - 4} & 6 & { - 4} & {...} & 0 \\ : & : & : & : & {} & : \\ 0 & 0 & 0 & 0 & {...} & { - 4} \\ 0 & 0 & 0 & {} & {...} & 6 \\ \end{array} } \right)_{{\left( {T - 2} \right)x\left( {T - 2} \right)}} ;\\ K_{T - 2}^{HD} = (B_{T - 2}^{HD} )^{ - 1} (C_{T - 2}^{HD} ); \hfill \\ \Xi \equiv \left( {\begin{array}{*{20}c} {\xi_{11,T} } & {\xi_{12,T} } \\ {\xi_{12,T} } & {\xi_{22,T} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\omega_{11} + 1} & {\omega_{12} - 1} \\ {\omega_{12} - 1} & {\omega_{22} + 2} \\ \end{array} } \right) - (C_{T - 2}^{HD} )^{\prime}(B_{T - 2}^{HD} )^{ - 1} (C_{T - 2}^{HD} ). \hfill \\ \end{gathered}$$

Our unreported simulations show that it is much easier to minimize the above log-likelihood function with respect to \((\delta ,\nu ,\xi_{T,11} ,\xi_{T,12} ,\xi_{T,22} ,\psi_{1} ,\psi_{2} ,a_{1} ,a_{2} )^{\prime}\) than to minimize the equivalent log-likelihood function (26) with respect to \(\phi^{HD} = (\delta ,\nu ,\omega_{11} ,\omega_{12} ,\omega_{13} ,\psi_{1} ,\psi_{2} ,a_{1} ,a_{2} )^{\prime}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.C., Thomas, G.M. Likelihood-based inference for dynamic panel data models. Empir Econ 64, 2859–2909 (2023). https://doi.org/10.1007/s00181-023-02375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-023-02375-0

Keywords

JEL Classification

Navigation