Skip to main content
Log in

Non-monotonic penalizing for the number of structural breaks

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper first reduces the problem of detecting structural breaks in a random walk to that of finding the best subset of explanatory variables in a regression model and then tailors various subset selection criteria to this specific problem. Of particular interest are those new criteria, which are obtained by means of simulation using the efficient algorithm of Bai and Perron (J Appl Econom 18:1–22, 2003). Unlike conventional variable selection methods, which penalize new variables entering a model either in the same way (e.g., AIC and BIC) or milder (e.g., MRIC and \(\mathrm {FPE}_\mathrm{{sub}}\)) than already included variables, they do not follow any monotonic penalizing scheme. In general, their non-monotonicity is more pronounced in the case of fat tails. The characteristics of the different criteria are illustrated using bootstrap samples from the Nile data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1969) Fitting autoregressive models for prediction. Ann Inst Stat Math 21:243–247

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likeliihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademia Kiado, Budapest, pp 267–281

    Google Scholar 

  • Bai J, Perron P (1998) Estimating and testing linear models with multiple structural changes. Econometrica 66:47–78

    Article  MathSciNet  MATH  Google Scholar 

  • Bai J, Perron P (2003) Computation and analysis of multiple structural change models. J Appl Econom 18:1–22

    Article  Google Scholar 

  • Bai J, Perron P (2006) Multiple structural change models: a simulation analysis. In: Corbea D, Durlauf S, Hansen BE (eds) Econometric theory and practice: frontiers of analysis and applied research. Cambridge University Press, Cambridge, pp 212–237

    Chapter  Google Scholar 

  • Cobb GW (1978) The problem of the nile: conditional solution to a changepoint problem. Biometrika 65:243–251

    Article  MathSciNet  MATH  Google Scholar 

  • Foster DP, George EI (1994) The risk inflation criterion for multiple regression. Ann Stat 22:1947–1975

    Article  MathSciNet  MATH  Google Scholar 

  • George EI, Foster DP (2000) Calibration and empirical Bayes variable selection. Biometrika 87:731–747

    Article  MathSciNet  MATH  Google Scholar 

  • Hong H, Preston B (2012) Bayesian averaging, prediction and nonnested model selection. J Econom 167:358–369

    Article  MathSciNet  Google Scholar 

  • Kabaila P (2002) On variable selection in linear regression. Econom Theory 18:913–925

    Article  MathSciNet  MATH  Google Scholar 

  • Kass RE, Wasserman L (1995) A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J Am Stat Assoc 90:928–934

    Article  MathSciNet  MATH  Google Scholar 

  • Kempthorne PJ (1984) Admissible variable-selection procedures when fitting regression models by least squares for prediction. Biometrika 71:593–597

    Article  MathSciNet  MATH  Google Scholar 

  • Kuehn C (2001) An estimator of the number of change points based on a weak invariance principle. Stat Probab Lett 51:189–196

    Article  MATH  Google Scholar 

  • Liu J, Wu S, Zidek JV (1997) On segmented multivariate regression. Statistica Sinica 7:497–526

    MathSciNet  MATH  Google Scholar 

  • Liu W, Yang Y (2011) Parametric or nonparametric? A parametericness index for model selection. Ann Stat 39:2074–2102

    Article  Google Scholar 

  • Ninomiya Y (2005) Information criterion for Gaussian change-point model. Stat Probab Lett 72:237–247

    Article  MathSciNet  MATH  Google Scholar 

  • Perron P (1997) L’estimation de modeles avec changements structurels multiples. Actual Econ 73:457–505

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, ISBN 3-900051-07-0, http://www.R-project.org/

  • Reschenhofer E (1996) Approximating the Bayes factor. Stat Probab Lett 30:241–245

    Article  MathSciNet  MATH  Google Scholar 

  • Reschenhofer E (2004) On subset selection and beyond. Adv Appl Stat 4:265–286

    MathSciNet  Google Scholar 

  • Reschenhofer E, Schilde M, Oberecker E, Payr E, Tandogan HT, Wakolbinger LM (2012) Identifying the determinants of foreign direct investment: a data-specic model selection approach. Stat Pap 53:739–752

    Article  MathSciNet  MATH  Google Scholar 

  • Rothman D (1968) Letter to the editor. Technometrics 10:432

    Article  MathSciNet  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MATH  Google Scholar 

  • Shibata R (1980) Asymptotically efficient selection of the order of the model for estimating parameters of a linear process. Ann Stat 8:147–164

    Article  MATH  Google Scholar 

  • Shibata R (1981) An optimal selection of regression variables. Biometrika 68:45–54

    Article  MathSciNet  MATH  Google Scholar 

  • Sin C-Y, White H (1996) Information criteria for selecting possibly misspecified parametric models. J Econom 71:207–225

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y (2005) Can the strengths of AIC and BIC be shared? A conflict between model identification and regression estimation. Biometrika 92:937–950

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y (2006) Prediction/estimation with simple linear models: is it really that simple? Econom Theory 23:1–36

    Google Scholar 

  • Yao Y-C (1988) Estimating the number of change-points via Schwarz’ criterion. Stat Probab Lett 6:181–189

    Article  MATH  Google Scholar 

  • Yao Y-C, Au ST (1989) Least-squares estimation of a step function. Sankhya Indian J Stat Ser A 51:370–381

    MathSciNet  MATH  Google Scholar 

  • Zeileis A, Kleiber C, Krämer W, Hornik K (2003) Testing and dating of structural changes in practice. Comput Stat Data Anal 44:109–123

    Article  MATH  Google Scholar 

  • Zeileis A, Shahb A, Patnaik I (2010) Testing, monitoring, and dating structural changes in exchange rate rregimes. Comput Stat Data Anal 54:1696–1706

    Article  Google Scholar 

Download references

Acknowledgments

The authors very much appreciate the referee’s comments, which helped to substantially improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Reschenhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reschenhofer, E., Preinerstorfer, D. & Steinberger, L. Non-monotonic penalizing for the number of structural breaks. Comput Stat 28, 2585–2598 (2013). https://doi.org/10.1007/s00180-013-0419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0419-4

Keywords

Mathematics Subject Classification (2000)

Navigation