Skip to main content
Log in

A novel cold air electrostatic minimum quantity lubrication (CAEMQL) technique for the machining of titanium alloys Ti–6Al–4 V

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The milling of titanium alloys is usually associated with a high cutting temperature and severe tool wear. Therefore, flood cooling technologies have been conventionally employed to prolong the tool life and improve the quality of the machined surface. However, the negative impact on the environment and waste disposal problems caused by the vast quantity of metalworking fluids used in the process have become significant. In this study, a new machining method called “cold air electrostatic minimum quantity lubrication (CAEMQL)” is proposed for machining titanium alloy Ti–6Al–4 V. The milling performance of CAEMQL was systematically assessed in terms of cutting force, cutting temperature, surface roughness, tool life, tool wear, and chip morphology, using minimum quantity lubrication (MQL), electrostatic minimum quantity lubrication (EMQL), and cold air minimum quantity lubrication (CAMQL) as benchmarks. It was found that CAEMQL resulted in improved critical heat flux and steady-state heat transfer performance compared to MQL, EMQL, and CAMQL, which thus produced a lower milling force, smaller milling temperature, better surface quality, and less tool wear. The degree of chip segmentation was enhanced with less deformation under CAEMQL due to its synergistic cooling and lubrication effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Dong G, Gao S, Wang L (2022) Three dimensional shape model of TiBw mesh reinforced titanium matrix composites in rotary ultrasonic grinding. J Manuf Process 75:682–692. https://doi.org/10.1016/j.jmapro.2022.01.039-tihuan

    Article  Google Scholar 

  2. Fernandez DS, Wynne BP, Crawforth P, Jackson M (2021) Titanium alloy microstructure fingerprint plots from in-process machining. Mat Sci Eng A-Struct 811 https://doi.org/10.1016/j.msea.2021.141074

  3. Babaremu KO, Jen TC, Oladijo PO, Akinlabi ET (2022) Mechanical, corrosion resistance properties and various applications of titanium and its alloys: a review. Revue Des Composites Et Des Materiaux Avances-Journal of Composite and Advanced Materials 32:11–16. https://doi.org/10.18280/rcma.320102

    Article  Google Scholar 

  4. Pramanik A, Littlefair G (2015) Machining of titanium alloy (Ti-6Al-4V)-theory to application. Mach Sci Technol 19:1–49. https://doi.org/10.1080/10910344.2014.991031

    Article  Google Scholar 

  5. Jung HJ, Hayasaka T, Shamoto E, Xu LJ (2020) Suppression of forced vibration due to chip segmentation in ultrasonic elliptical vibration cutting of titanium alloy Ti-6Al-4V. Precis Eng 64:98–107. https://doi.org/10.1016/j.precisioneng.2020.03.017

    Article  Google Scholar 

  6. Jia D, Zhang Y, Li C, Yang M, Gao T, Said Z, Sharma S (2022) Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Tribol Int 169 https://doi.org/10.1016/j.triboint.2022.107461

  7. Damm O, Bezuidenhout M, Uheida E, Dicks L, Hadasha W, Hagedorn-Hansen D (2021) Yeast-based metalworking fluid for milling of titanium alloy - an example of bio-integration. CIRP J Manuf Sci Tec 34:47–60. https://doi.org/10.1016/j.cirpj.2021.01.004

    Article  Google Scholar 

  8. Wu X, Li C, Zhou Z, Nie X, Chen Y, Zhang Y, Cao H, Liu B, Zhang N, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2021) Circulating purification of cutting fluid: an overview. Int J Adv Manuf Technol 117:2565–2600. https://doi.org/10.1007/s00170-021-07854-1

    Article  Google Scholar 

  9. Lian Y, Long Y, Zhao G, Mu C, Li X, Deng J, Xie C (2020) Performance of CrCN-WS2 hard/soft composite coated tools in dry cutting of titanium alloys. J Manuf Process 54:201–209. https://doi.org/10.1016/j.jmapro.2020.03.014

    Article  Google Scholar 

  10. Zhang S, Li J, Wang Y (2012) Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J Clean Prod 32:81–87. https://doi.org/10.1016/j.jclepro.2012.03.014

    Article  Google Scholar 

  11. Xu X, Huang S, Wang M, Yao W (2017) A study on process parameters in end milling of AISI-304 stainless steel under electrostatic minimum quantity lubrication conditions. Int J Adv Manuf Technol 90:979–998. https://doi.org/10.1007/s00170-016-9417-3

    Article  Google Scholar 

  12. Wu G, Li G, Pan W, Raja I, Wang X, Ding S (2022) Experimental investigation of eco-friendly cryogenic minimum quantity lubrication (CMQL) strategy in machining of Ti-6Al-4V thin-wall part. J Clean Prod 357 https://doi.org/10.1016/j.jclepro.2022.131993

  13. Saberi A, Rahimi A, Parsa H, Ashrafijou M, Rabiei F (2016) Improvement of surface grinding process performance of CK45 soft steel by minimum quantity lubrication (MQL) technique using compressed cold air jet from vortex tube. J Clean Prod 131:728–738. https://doi.org/10.1016/j.jclepro.2016.04.104

    Article  Google Scholar 

  14. Yildiz Y, Nalbant M (2008) A review of cryogenic cooling in machining processes. Int J Mach Tool Manuf 48:947–964. https://doi.org/10.1016/j.ijmachtools.2008.01.008

    Article  Google Scholar 

  15. Okada M, Hosokawa A, Asakawa N, Ueda T (2014) End milling of stainless steel and titanium alloy in an oil mist environment. Int J Adv Manuf Technol 74:1255–1266. https://doi.org/10.1007/s00170-014-6060-8

    Article  Google Scholar 

  16. Wang X, Li C, Zhang Y, et al (2022) Tribology of enhanced turning using biolubricants: a comparative assessment. Tribol Int 174 https://doi.org/10.1016/j.triboint.2022.107766

  17. Osman K, Ünver H, Seker U (2019) Application of minimum quantity lubrication techniques in machining process of titanium alloy for sustainability: a review. Int J Adv Manuf Technol 100:2311–2332. https://doi.org/10.1007/s00170-018-2813-0

    Article  Google Scholar 

  18. Sartori S, Ghiotti A, Bruschi S (2018) Solid lubricant-assisted minimum quantity lubrication and cooling strategies to improve Ti6Al4V machinability in finishing turning. Tribol Int 118:287–294. https://doi.org/10.1016/j.triboint.2017.10.010

    Article  Google Scholar 

  19. Mia M, Gupta M, Lozano J, Carou D, Pimenov D, Królczyk G et al (2019) Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. J Clean Prod 210:121–133. https://doi.org/10.1016/j.jclepro.2018.10.334

    Article  Google Scholar 

  20. Maruda R, Krolczyk G, Nieslony P, Wojciechowski S, Michalski M, Legutko S (2016) The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J Manuf Process 24:107–115. https://doi.org/10.1016/j.jmapro.2016.08.006

    Article  Google Scholar 

  21. Maruda R, Krolczyk G, Feldshtein E, Nieslony P, Tyliszczak B, Pusavec F (2017) Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear 372–373:54–67. https://doi.org/10.1016/j.wear.2016.12.006

    Article  Google Scholar 

  22. Maruda R, Krolczyk G, Michalski M, Nieslony P, Wojciechowski S (2017) Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. J Mater Eng Perform 26:431–438. https://doi.org/10.1007/s11665-016-2450-4

    Article  Google Scholar 

  23. Pal A, Chatha S, Sidhu H (2021) Performance evaluation of the minimum quantity lubrication with Al2O3-mixed vegetable-oil-based cutting fluid in drilling of AISI 321 stainless steel. J Manuf Process 66:238–249. https://doi.org/10.1016/j.mapro.2021.04.024

    Article  Google Scholar 

  24. Rodriguez R, Lopes J, Hildebrandt R, Perez R et al (2019) Evaluation of grinding process using simultaneously MQL technique and cleaning jet on grinding wheel surface. J Mater process tech 271:357–367. https://doi.org/10.1016/j.jmatprotec.2019.03.019

    Article  Google Scholar 

  25. Şirin S, Sarıkaya M, Yıldırım C, Kıvak T (2021) Machinability performance of nickel alloy X-750 with SiAlON ceramic cutting tool under dry, MQL and hBN mixed nanofluid-MQL. Tribol Int 153:106673. https://doi.org/10.1016/j.triboint.2020.106673

    Article  Google Scholar 

  26. Sarikaya M, Gupta M, Tomaz I, Danish M, Mia M, Rubaiee S et al (2021) Cooling techniques to improve the machinability and sustainability of light-weight alloys: a state-of-the-art review. J Manuf Process 62:179–201. https://doi.org/10.1016/j.jmapro.2020.12.013

    Article  Google Scholar 

  27. Dhar N, Ahmed M, Islam S (2007) An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. Int J Mach Tool Manuf 47:748–753. https://doi.org/10.1016/j.ijmachtools.2006.09.017

    Article  Google Scholar 

  28. Tasdelen B, Thordenberg H, Olofsson D (2008) An experimental investigation on contact length during minimum quantity lubrication (MQL) machining. J Mater Process Tech 203:221–231. https://doi.org/10.1016/j.jmatprotec.2007.10.027

    Article  Google Scholar 

  29. Krishnan P, Raj S (2022) Analysis of high speed drilling AISI 304 under MQL condition through a novel tool wear measurement method and surface integrity studies. Tribol Int 176 https://doi.org/10.1016/j.triboint.2022.107871

  30. Sun H, Zou B, Chen P, Huang C, Guo G, Liu J, Li L, Shi Z (2022) Effect of MQL condition on cutting performance of high-speed machining of GH4099 with ceramic end mills. Tribol Int 167 https://doi.org/10.1016/j.triboint.2021.107401

  31. Shen B (2008) Minimum quantity lubrication grinding using nanofluids. Doctoral dissertation, University of Michigan https://hdl.handle.net/2027.42/60683

  32. Yuan S, Yan L, Liu W, Liu Q (2011) Effects of cooling air temperature on cryogenic machining of Ti-6Al-4V alloy. J Mater Process Tech 211:356–362. https://doi.org/10.1016/j.jmatprotec.2010.10.009

    Article  Google Scholar 

  33. Silva L, Correa E, Brandao J, Avila R (2020) Environmentally friendly manufacturing: behavior analysis of minimum quantity of lubricant - MQL in grinding process. J Clean Prod 256 10.1016/j. jclepro.2013.01.033

  34. Jamil M, He N, Huang X, Zhao W, Khan A, Asiflqbal (2022) Thermophysical, tribological, and machinability characteristics of newly developed sustainable hybrid lubri-coolants for milling Ti-6Al-4V. J Manuf Process 73:572–594. https://doi.org/10.1016/j.jmapro.2021.10.051

    Article  Google Scholar 

  35. Cetindag H, Cicek A, Ucak N (2020) The effects of CryoMQL conditions on tool wear and surface integrity in hard turning of AISI 52100 bearing steel. J Manuf Process 56:463–473. https://doi.org/10.1016/j.jmapro.2020.05.015

    Article  Google Scholar 

  36. Gross D, Hanenkamp N (2021) Energy efficiency assessment of cryogenic minimum quantity lubrication cooling for milling operations. Procedia CIRP 98:523–528. https://doi.org/10.1016/j.procir.2021.01.145

    Article  Google Scholar 

  37. Sanchez JA, Pombo I, Alberdi R, Izquierdo B, Ortega N, Plaza S, Martinez-Toledano J (2010) Machining evaluation of a hybrid MQL-CO2 grinding technology. J Clean Prod 18:1840–1849. https://doi.org/10.1016/j.jclepro.2010.07.002

    Article  Google Scholar 

  38. Hong S, Ding Y (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. Int J Mach Tool Manuf 41:1417–1437. https://doi.org/10.1016/S0890-6955(01)00026-8

    Article  Google Scholar 

  39. Jebaraj M, Kumar MP, Anburaj R (2020) Effect of LN2 and CO2 coolants in milling of 55NiCrMoV7 steel. J Manuf Process 53:318–327. https://doi.org/10.1016/j.jmapro.2020.02.040

    Article  Google Scholar 

  40. Ravi S, Gurusamy P (2019) Experimental studies on the effect of LN2 cooling on the machining of tool steel. Mater Today: Proc 33:3292–3296. https://doi.org/10.1016/j.matpr.2020.04.734

    Article  Google Scholar 

  41. Yang Y, Guo S, Si L, Liu T, Dai Y, Yan C (2021) Investigation of a new water-based cutting fluid for machining of titanium alloys. J Manuf Process 71:398–406. https://doi.org/10.1016/j.jmapro.2021.09.046

    Article  Google Scholar 

  42. Shokrani A, Al-Samarrai I, Newman S (2019) Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy. J Manuf Process 43:229–243. https://doi.org/10.1016/j.jmapro.2019.05.006

    Article  Google Scholar 

  43. Lin H, Wang C, Yuan Y, Chen Z, Wang Q, Xiong W (2015) Tool wear in Ti-6Al-4V alloy turning under oils on water cooling comparing with cryogenic air mixed with minimal quantity lubrication. Int J Adv Manuf Technol 81:87–101. https://doi.org/10.1007/s00170-015-7062-x

    Article  Google Scholar 

  44. Zhang G, Wei H (2010) Selection of optimal process parameters for gear hobbing under cold air minimum quantity lubrication cutting environment. Proceedings of the 36th International MATADOR Conference 231–234 https://doi.org/10.1007/978-1-84996-432-6_53

  45. Mitrofanov A, Parsheva K, Nosenko V (2021) Simulation of an artificial neural network for predicting temperature and cutting force during grinding using CAMQL. Mater Today: Proc 38:1508–1511. https://doi.org/10.1016/j.matpr.2020.08.139

    Article  Google Scholar 

  46. Krutikova A, Mitrofanov A, Parsheva K (2019) Application of the technology of supplying a minimum amount of lubricant in a cooled air stream when grinding a heat-resistant alloy. Tekhnologiya Metallov 8:9–15

    Google Scholar 

  47. Lin J, Lv T, Huang S, Hu X, Xu X (2018) Experimental investigation on grinding performance based on EMQL technology. Chin J Mech Eng 29:2783–2791. https://doi.org/10.3969/j.issn.1004-132X.2018.23.003

    Article  Google Scholar 

  48. Huang S, Wang Z, Yao W, Xu X (2015) Tribological evaluation of contact-charged electrostatic spray lubrication as a new near-dry machining technique. Tribol Int 91:74–84. https://doi.org/10.1016/j.triboint.2015.06.029

    Article  Google Scholar 

  49. Huang S, Lv T, Wang M, Xu X (2018) Effects of machining and oil mist parameters on electrostatic minimum quantity lubrication–EMQL turning process. Int J of Precis Eng and Manuf-Green Tech 5:317–326. https://doi.org/10.1007/s40684-018-0034-5

    Article  Google Scholar 

  50. Lv T, Xu X, Yu A, Hu X (2021) Oil mist concentration and machining characteristics of SiO2 water-based nano-lubricants in electrostatic minimum quantity lubrication-EMQL milling. J Mater Process Tech 290 https://doi.org/10.1016/j.jmatprotec.2020.116964

  51. Bartolomeis AD, Newman ST, Shokrani A (2021) High-speed milling Inconel 718 using electrostatic minimum quantity lubrication (EMQL). Procedia CIRP 101:354–357. https://doi.org/10.1016/j.procir.2021.02.038

    Article  Google Scholar 

  52. Jia D, Li C, Zhang Y, Yang M, Cao H, Liu B, Zhou Z (2022) Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant. J Mech Eng 58(198–211):1. https://doi.org/10.3901/JME.2022.05.198

    Article  Google Scholar 

  53. Wendelstorf J, Spitzer K, Wendelstorf R (2008) Spray water cooling heat transfer at high temperatures and liquid mass fluxes. Int J Heat Mass Tran 51:4902–4910. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.032

    Article  MATH  Google Scholar 

  54. Tan W (2001) Computer simulation of a spray cooling system with FC-72. Doctoral dissertation, Orlando: University of Central Florida

  55. Yildirim C, Kivak T, Sarikaya M, Sirin S (2020) Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J Mater Res Technol 9(2020):2079–2092. https://doi.org/10.1016/j.jmrt.2019.12.069

    Article  Google Scholar 

  56. Asad M, Ijaz H, Khan M, Khan M, Mabrouki T, Rashid M (2022) Comparative analyses and investigations of chamfered and honed-edge tool geometries on tool wear, chip morphology, residual stresses and end-burr formation. J Manuf Process 80:196–209. https://doi.org/10.1016/j.mapro.2022.06.004

    Article  Google Scholar 

  57. Zhao Y, Li J, Guo K, Sivalingam V, Sun J (2020) Study on chip formation characteristics in turning NiTi shape memory alloys. J Manuf Process 58:787–795. https://doi.org/10.1016/j.jmapro.2020.08.072

    Article  Google Scholar 

  58. Wang B, Liu Z, Su G, Ai X (2015) Brittle removal mechanism of ductile materials with ultrahigh-speed machining. J Manuf Sci E-T Asme 137 https://doi.org/10.1115/1.4030826

  59. Hariprasad B, Selvakumar S, Raj S (2022) Effect of cutting edge radius on end milling Ti–6Al–4V under minimum quantity cooling lubrication – chip morphology and surface integrity study. Wear 498–499 https://doi.org/10.1016/j.wear.2022.204307

  60. Tang L, Li P, Qiu X, Niu Q (2018) Study on surface morphology and burr of titanium alloy TC4 turned with carbide coated insert. Tool Eng 52:52–55. https://doi.org/10.3969/j.issn.1000-7008.2018.08.030

    Article  Google Scholar 

Download references

Funding

The work described in this paper was supported by the China National Key R&D Program (Grant No. 52275468).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed to the creation of this manuscript for its important intellectual content and approved the final manuscript. Xuefeng Xu: methodology, data curation, experimentation, validation, formal analysis, and writing—review, and editing. Fucai Liu: supervision, writing—original draft, and writing—review and providing method. Yu Xia and Tao Lv: supervision and guidance. Ruochong Zhang and Xiaodong Hu: experimentation and analysis of the data.

Corresponding author

Correspondence to Xuefeng Xu.

Ethics declarations

Ethics approval

The authors confirm the work’s novelty and state that it has not been submitted to any other journal.

Consent to participate

The authors give consent to participate.

Consent for publication

The authors give their consent for their work to be published.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wu, X., Xia, Y. et al. A novel cold air electrostatic minimum quantity lubrication (CAEMQL) technique for the machining of titanium alloys Ti–6Al–4 V. Int J Adv Manuf Technol 126, 3437–3452 (2023). https://doi.org/10.1007/s00170-023-11222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11222-6

Keywords

Navigation