Skip to main content
Log in

Application of MQL with cooled air and wheel cleaning jet for greener grinding process

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Metalworking fluids (MWF) or flooded process based on mineral oil are widely used in industry, which is unsustainable and causes damage to employees and the environment, in addition to making up a significant part of the machining cost. On the other hand, abrasive machining methods, such as grinding, are increasingly used for their excellent finish and geometric precision but use large quantities of metalworking fluids. This work evaluates the alternative methods Minimum Lubricant Quantity (MQL), MQL + Cooled Air (CA), MQL + Wheel Cleaning Jet (WCJ), and MQL + Cooled WCJ in the grinding of AISI 4340 steel compared to the application of flooded process. Surface roughness, roundness error, G ratio, grinding power, specific energy, microhardness, cost per piece, and carbon emission tests were applied. From the results, MQL reduced the cost of grinding around 90% and carbon emission by 67% compared to grinding with flooded process. The MQL + CWCJ produced the best results of surface quality compared to other alternative techniques, significantly approaching the results of the flooded process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann - Manuf Technol 61:587–609. https://doi.org/10.1016/j.cirp.2012.05.002

    Article  Google Scholar 

  2. Dehejia R, Panagariya A (2016) The link between manufacturing growth and accelerated services growth in India. Econ Dev Cult Change 64:221–264. https://doi.org/10.1086/683842

    Article  Google Scholar 

  3. Wickramasinghe KC, Sasahara H, Rahim EA, Perera GIP (2020) Green metalworking fluids for sustainable machining applications: a review. J Clean Prod 257:120552. https://doi.org/10.1016/j.jclepro.2020.120552

    Article  Google Scholar 

  4. Guerrini G, Lerra F, Fortunato A (2019) The effect of radial infeed on surface integrity in dry generating gear grinding for industrial production of automotive transmission gears. J Manuf Process 45:234–241. https://doi.org/10.1016/j.jmapro.2019.07.006

    Article  Google Scholar 

  5. Winter M, Li W, Kara S, Herrmann C (2014) Determining optimal process parameters to increase the eco-efficiency of grinding processes. J Clean Prod 66:644–654. https://doi.org/10.1016/j.jclepro.2013.10.031

    Article  Google Scholar 

  6. Rowe WB (2014) Principles of modern grinding technology, principles of modern grinding technology. Elsevierhttps://doi.org/10.1016/C2013-0-06952-6

  7. Marinescu ID, Hitchiner M, Uhlmann E, Rowe WB (2007) Handbook of machining with grinding wheels, 1o edn. CRC Press, New York

    Google Scholar 

  8. Khan AW, Wuyi C (2010) Systematic geometric error modeling for workspace volumetric calibration of a 5-axis turbine blade grinding machine. Chinese J Aeronaut 23:604–615. https://doi.org/10.1016/S1000-9361(09)60261-2

    Article  Google Scholar 

  9. Lopes JC, Garcia MV, Valentim M, Javaroni RL, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance using variants of the MQL technique: MQL with cooled air and MQL simultaneous to the wheel cleaning jet. Int J Adv Manuf Technol 105:4429–4442. https://doi.org/10.1007/s00170-019-04574-5

    Article  Google Scholar 

  10. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fl uids and cooling techniques in machining : a review. J Clean Prod 83:33–47. https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  11. Rabiei F, Rahimi AR, Hadad MJ, Ashrafijou M (2015) Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization. J Clean Prod 86:447–460. https://doi.org/10.1016/j.jclepro.2014.08.045

    Article  Google Scholar 

  12. Benedicto E, Carou D, Rubio EM (2017) Technical, economic and environmental review of the lubrication/cooling systems used in machining processes, in: Procedia Engineering. The Author(s), p. 99–116. https://doi.org/10.1016/j.proeng.2017.04.075

  13. Demirbas E, Kobya M (2017) Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Saf Environ Prot 105:79–90. https://doi.org/10.1016/j.psep.2016.10.013

    Article  Google Scholar 

  14. Garcia MV, Lopes JC, Diniz AE, Rodrigues AR, Volpato RS, de Sanchez LEA, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding performance of bearing steel using MQL under different dilutions and wheel cleaning for green manufacture. J. Clean. Prod. 257:120376. https://doi.org/10.1016/j.jclepro.2020.120376

    Article  Google Scholar 

  15. Tools Manuf. 60: 1–13. https://doi.org/10.1016/j.ijmachtools.2011.11.003

  16. Soković M, Mijanović K (2001) Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes. J Mater Process Technol 109:181–189. https://doi.org/10.1016/S0924-0136(00)00794-9

    Article  Google Scholar 

  17. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  18. Kuram E, Ozcelik B, Bayramoglu M, Demirbas E, Simsek BT (2013) Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. J Clean Prod 42:159–166. https://doi.org/10.1016/j.jclepro.2012.11.003

    Article  Google Scholar 

  19. de Moraes DL, Garcia MV, Lopes JC, Ribeiro FSF, de Angelo Sanchez LE, Foschini CR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Performance of SAE 52100 steel grinding using MQL technique with pure and diluted oil. Int J Adv Manuf Technol 105:4211–4223. https://doi.org/10.1007/s00170-019-04582-5

    Article  Google Scholar 

  20. Setti D, Sinha MK, Ghosh S, Venkateswara Rao P (2015) Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int J Mach Tools Manuf 88:237–248. https://doi.org/10.1016/j.ijmachtools.2014.10.005

    Article  Google Scholar 

  21. Bordin A, Sartori S, Bruschi S, Ghiotti A (2017) Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by Additive Manufacturing. J Clean Prod 142:4142–4151. https://doi.org/10.1016/j.jclepro.2016.09.209

    Article  Google Scholar 

  22. Yildiz Y, Nalbant M (2008) A review of cryogenic cooling in machining processes. Int J Mach Tools Manuf 48:947–964. https://doi.org/10.1016/j.ijmachtools.2008.01.008

    Article  Google Scholar 

  23. Li X, Li Y (2016) Chain-to-chain competition on product sustainability. J Clean Prod 112:2058–2065. https://doi.org/10.1016/j.jclepro.2014.09.027

    Article  Google Scholar 

  24. Luna FMT, Rocha BS, Rola EM, Albuquerque MCG, Azevedo DCS, Cavalcante CL (2011) Assessment of biodegradability and oxidation stability of mineral, vegetable and synthetic oil samples. Ind Crops Prod 33:579–583. https://doi.org/10.1016/j.indcrop.2010.12.012

    Article  Google Scholar 

  25. da Silva AE, Lopes JC, Daniel DM, de Moraes DL, Garcia MV, Ribeiro FSF, de Mello HJ, Sanchez LEDA, Aguiar PR, Bianchi EC (2020) Behavior of austempered ductile iron (ADI) grinding using different MQL dilutions and CBN wheels with low and high friability. Int J Adv Manuf Technol 107:4373–4387. https://doi.org/10.1007/s00170-020-05347-1

    Article  Google Scholar 

  26. Lopes JC, Fragoso KM, Garcia MV, Ribeiro FSF, Francelin AP, de Angelo Sanchez LE, Rodrigues AR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Behavior of hardened steel grinding using MQL under cold air and MQL CBN wheel cleaning. Int J Adv Manuf Technol 105:4373–4387. https://doi.org/10.1007/s00170-019-04571-8

    Article  Google Scholar 

  27. Tawakoli T, Hadad M, Sadeghi MH, Daneshi A, Sadeghi B (2011) Minimum quantity lubrication in grinding: effects of abrasive and coolant-lubricant types. J Clean Prod 19:2088–2099. https://doi.org/10.1016/j.jclepro.2011.06.020

    Article  Google Scholar 

  28. da Silva LR, Bianchi EC, Fusse RY, Catai RE, França TV, Aguiar PR (2007) Analysis of surface integrity for minimum quantity lubricant-MQL in grinding. Int J Mach Tools Manuf 47:412–418. https://doi.org/10.1016/j.ijmachtools.2006.03.015

    Article  Google Scholar 

  29. Davim JP (ed) (2008) Machining: fundamentals and recent advances

  30. Damasceno RF, de Ruzzi RS, França TV, de Mello HJ, da Silva RB, de Aguiar PR, Bianchi EC (2017) Performance evaluation of various cooling-lubrication techniques in grinding of hardened AISI 4340 steel with vitrified bonded CBN wheel. Int J Adv Manuf Technol 92:3795–3806. https://doi.org/10.1007/s00170-017-0434-7

    Article  Google Scholar 

  31. Zhang D, Li C, Jia D, Zhang Y, Zhang X (2015) Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding. Chinese J Aeronaut 28:570–581. https://doi.org/10.1016/j.cja.2014.12.035

    Article  Google Scholar 

  32. Rodriguez RL, Lopes JC, Hildebrandt RA, Perez RRV, Diniz AE, de Ângelo Sanchez LE, Rodrigues AR, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Evaluation of grinding process using simultaneously MQL technique and cleaning jet on grinding wheel surface. J Mater Process Technol 271:357–367. https://doi.org/10.1016/j.jmatprotec.2019.03.019

    Article  Google Scholar 

  33. Bianchi EC, Sato BK, Sales AR, Lopes JC, de Mello HJ, de Angelo Sanchez LE, Diniz AE, Aguiar PR (2018) Evaluating the effect of the compressed air wheel cleaning in grinding the AISI 4340 steel with CBN and MQL with water. Int J Adv Manuf Technol 95:2855–2864. https://doi.org/10.1007/s00170-017-1433-4

    Article  Google Scholar 

  34. Ribeiro FSF, Lopes JC, Garcia MV, de Angelo Sanchez LE, de Mello HJ, de Aguiar PR, Bianchi EC (2020) Grinding performance by applying MQL technique: an approach of the wheel cleaning jet compared with wheel cleaning Teflon and Alumina block. Int J Adv Manuf Technol 107:4415–4426. https://doi.org/10.1007/s00170-020-05334-6

    Article  Google Scholar 

  35. Saberi A, Rahimi AR, Parsa H, Ashrafijou M, Rabiei F (2016) Improvement of surface grinding process performance of CK45 soft steel by minimum quantity lubrication (MQL) technique using compressed cold air jet from vortex tube. J Clean Prod 131:728–738. https://doi.org/10.1016/j.jclepro.2016.04.104

    Article  Google Scholar 

  36. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, Hou Y, Li R, Zhang N, Wu Q, Cao H (2018) Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J Clean Prod 193:236–248. https://doi.org/10.1016/j.jclepro.2018.05.009

    Article  Google Scholar 

  37. Singh GR, Sharma VS (2017) Analyzing machining parameters for commercially puretitanium (Grade 2), cooled using minimum quantity lubrication assisted by a Ranque-Hilsch vortex tube. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-8982-9

    Article  Google Scholar 

  38. Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, da Silva RB, de Aguiar PR (2018) Plunge cylindrical grinding with the minimum quantity lubrication coolant technique assisted with wheel cleaning system. Int J Adv Manuf Technol 95:2907–2916. https://doi.org/10.1007/s00170-017-1396-5

    Article  Google Scholar 

  39. Javaroni RL, Lopes JC, Garcia MV, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding hardened steel using MQL associated with cleaning system and cBN wheel. Int J Adv Manuf Technol 107:2065–2080. https://doi.org/10.1007/s00170-020-05169-1

    Article  Google Scholar 

  40. Lopes JC, de Martini Fernandes L, Garcia MV, Moretti GB, de Moraes DL, Ribeiro FSF, de Angelo Sanchez LE, de Oliveira RFM, de Mello HJ, Aguiar PR, Bianchi EC, Fernandes LDM, Garcia MV, Moretti GB, Moraes DLD, Sabino F, Ribeiro FSF, Eduardo L, Sanchez DA, Fischer R, Oliveira MD, Mello HJD, Aguiar PR, Bianchi EC (2020) Performance of austempered ductile iron ( ADI ) grinding using diluted oil in MQL combined with wheel cleaning jet and different CBN grains friability. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-05142-y

    Article  Google Scholar 

  41. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Experimental evaluation of MoS2 nanoparticles in jet 40. MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940. https://doi.org/10.1016/j.jclepro.2014.10.027

    Article  Google Scholar 

  42. de Oliveira DJ, Guermandi LG, Bianchi EC, Diniz AE, de Aguiar PR, Canarim RC (2012) Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning. J Mater Process Technol 212:2559–2568. https://doi.org/10.1016/j.jmatprotec.2012.05.019

    Article  Google Scholar 

  43. Lopes JC, Garcia MV, Volpato RS, de Mello HJ, Ribeiro FSF, de Angelo Sanchez LE, de Oliveira Rocha K, Neto LD, Aguiar PR, Bianchi EC (2020) Application of MQL technique using TiO2 nanoparticles compared to MQL simultaneous to the grinding wheel cleaning jet. Int J Adv Manuf Technol 106:2205–2218. https://doi.org/10.1007/s00170-019-04760-5

    Article  Google Scholar 

  44. King RI, Hahn RS (2012) Handbook of modern grinding technology. Springer Science & Business Media

  45. Malkin S, Guo C (2008) Grinding technology: theory and applications of machining with abrasives, 2aed edn. Industrial Press Inc, New York

    Google Scholar 

  46. de Martini Fernandes L, Lopes JC, Volpato RS, Diniz AE, de Oliveira RFM, de Aguiar PR, de Mello HJ, Bianchi EC (2018) Comparative analysis of two CBN grinding wheels performance in nodular cast iron plunge grinding. Int J Adv Manuf Technol 98:237–249. https://doi.org/10.1007/s00170-018-2133-4

    Article  Google Scholar 

  47. Field M, Kegg R, Buescher S (1980) Computerized cost analysis of grinding operations. CIRP Ann 29:233–237. https://doi.org/10.1016/S0007-8506(07)61328-6

    Article  Google Scholar 

  48. Abellan-Nebot JV, Rogero MO (2019) Sustainable machining of molds for tile industry by minimum quantity lubrication. J Clean Prod 240:118082. https://doi.org/10.1016/j.jclepro.2019.118082

    Article  Google Scholar 

  49. Pusavec F, Kramar D, Krajnik P, Kopac J (2010) Transitioning to sustainable production – part II: evaluation of sustainable machining technologies. J Clean Prod 18:1211–1221. https://doi.org/10.1016/j.jclepro.2010.01.015

    Article  Google Scholar 

  50. Hitchcox A (2015) Determine the Cost of Compressed Air for Your Plant [WWW Document]. URL https://www.hydraulicspneumatics.com/technologies/air-compressors/article/21884932/determine-the-cost-of-compressed-air-for-your-plant

  51. Lopes JC, de Martini Fernandes L, Domingues BB, Canarim RC, da Penha Cindra Fonseca M, de Angelo Sanchez LE, de Oliveira RFM, de Mello HJ, Aguiar PR, Bianchi EC (2019) Effect of CBN grain friability in hardened steel plunge grinding. Int J Adv Manuf Technol 103:1567–1577. https://doi.org/10.1007/s00170-019-03654-w

    Article  Google Scholar 

  52. Ribeiro FSF, Lopes JC, Garcia MV, de Moraes DL, da Silva AE, de Angelo Sanchez LE, de Aguiar PR, Bianchi EC (2020) New knowledge about grinding using MQL simultaneous to cooled air and MQL combined to wheel cleaning jet technique. Int J Adv Manuf Technol 109:905–917. https://doi.org/10.1007/s00170-020-05721-z

    Article  Google Scholar 

  53. Sato BK, Lopes JC, Diniz AE, Rodrigues AR, de Mello HJ, Sanchez LEA, Aguiar PR, Bianchi EC (2020) Toward sustainable grinding using minimum quantity lubrication technique with diluted oil and simultaneous wheel cleaning. Tribol Int 147:106276. https://doi.org/10.1016/j.triboint.2020.106276

    Article  Google Scholar 

  54. Silva LR, Corrêa ECS, Brandão JR, de Ávila RF (2020) Environmentally friendly manufacturing: behavior analysis of minimum quantity of lubricant - MQL in grinding process. J Clean Prod 256:103287. https://doi.org/10.1016/j.jclepro.2013.01.033

    Article  Google Scholar 

  55. Marinescu ID, Hitchiner MP, Uhlmann E, Rowe WB, Inasaki I (2016) Handbook of machining with grinding wheels. CRC Press. https://doi.org/10.1201/b19462

    Article  Google Scholar 

  56. Hadad M, Sadeghi B (2012) Thermal analysis of minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 63:1–15. https://doi.org/10.1016/j.ijmachtools.2012.07.003

    Article  Google Scholar 

  57. Agarwal S (2019) On the mechanism and mechanics of wheel loading in grinding. J Manuf Process 41:36–47. https://doi.org/10.1016/j.jmapro.2019.03.009

    Article  Google Scholar 

  58. Singh V, Rao VP, Ghosh S (2012) Development of specific grinding energy model. Int J Mach Tools Manuf 60:1–13

    Article  Google Scholar 

  59. Li Z, Ding W, Liu C, Su H (2018) Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding. Int J Adv Manuf Technol 94:3917–3928. https://doi.org/10.1007/s00170-017-1159-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors also thank companies Nikkon Ferramentas de Corte Ltda and Norton Abrasives—Saint Gobain Group for providing the grinding wheel, ITW Chemical Products for the donation of the cutting fluids and the authors thank everyone by support to the research and opportunity for scientific and technological development.

Funding

Special thanks to FAPESP (São Paulo Research Foundation – Proc. 2018/22661–2) for financial support. CAPES (Coordination for the Improvement of Higher-Level Education Personnel), and CNPq (National Council for Scientific and Technological Development) for their financial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

Douglas Maiochi Daniel: writing—original draft; writing—review and editing; visualization; conceptualization; formal analysis; investigation; validation. Douglas Lyra de Moraes: writing—original draft; writing—review and editing; data curation; formal analysis. Mateus Vinicius Garcia: writing—original draft; investigation; data curation; formal analysis. José Claudio Lopes: writing—original draft; resources; conceptualization; methodology; project administration. Rafael Lemes Rodriguez: writing—original draft; investigation; validation. Fernando Sabino Fonteque Ribeiro: conceptualization; methodology; validation; writing—original draft. Luiz Eduardo de Angelo Sanchez: writing—review and editing; conceptualization; supervision. Eduardo Carlos Bianchi: funding acquisition; conceptualization; resources; supervision; project administration.

Corresponding author

Correspondence to Eduardo Carlos Bianchi.

Ethics declarations

Ethical approval

The authors declare that this manuscript was not submitted to more than one journal for simultaneous consideration. Also, the submitted work is original and not have been published elsewhere in any form or language.

Consent to participate and publish

The authors declare that they participated in this paper willingly and the authors declare to consent to the publication of this paper.

Competing interests

The authors declare is no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, D.M., Moraes, D.L.d., Garcia, M.V. et al. Application of MQL with cooled air and wheel cleaning jet for greener grinding process. Int J Adv Manuf Technol 125, 435–452 (2023). https://doi.org/10.1007/s00170-022-10712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10712-3

Keywords

Navigation