Skip to main content
Log in

Advances in ultra-precision machining of bearing rolling elements

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Rolling bearings are extensively employed in the modern machinery industry and are critical industrial base elements. The machining accuracy of bearing rolling elements has a great impact on the service performance of rolling bearings. In this work, advances in the ultra-precision machining of bearing rolling elements are summarized, and corresponding outlooks are presented. An introduction to the accuracy requirement of the rolling element and the corresponding basic principles are first discussed. Subsequently, advancements in the ultra-precision machining of bearing balls are reviewed and analysed. Meanwhile, research progress on the ultra-precision machining of bearing rollers is also summarized and compared with the investigations on bearing balls. It is demonstrated that due to the absence of an intercomparison effect in the machining process, the batch accuracy of the bearing roller is lower than that of the bearing ball. Furthermore, more attention should be given to the machining accuracy of the crown profile and spherical datum surface of the bearing roller. Finally, in regard to the above academic achievements, conclusions and outlooks on the ultra-precision machining of bearing rolling elements are given. The advances and outlooks summarized in this work are beneficial to both academic scientists and industrial researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Yan C, Zhao M, Lin J, Liang K, Zhang Z (2020) Fault signature enhancement and skidding evaluation of rolling bearing based on estimating the phase of the impulse envelope signal. J Sound Vib 485:115529

    Article  Google Scholar 

  2. Li X, Jiang H, Niu M, Wang R (2020) An enhanced selective ensemble deep learning method for rolling bearing fault diagnosis with beetle antennae search algorithm. Mech Syst Signal Pr 142:106752

    Article  Google Scholar 

  3. Hwang YK, Lee CM (2020) Development of a newly structured variable preload control device for a spindle rolling bearing by using an electromagnet. Int J Mach Tools Manufact 50(3):253–259

    Article  Google Scholar 

  4. Liu J, Ma C, Wang S, Wang S, Yang B, Shi H (2019) Thermal-structure interaction characteristics of a high-speed spindle-bearing system. Int J Mach Tools Manufact 137:42–57

    Article  Google Scholar 

  5. Wang Q, Xu K, Kong X, Huai T (2021) A linear mapping method for predicting accurately the RUL of rolling bearing. Measurement 176:109127

    Article  Google Scholar 

  6. Li Y, Cao H, Tang K (2019) A general dynamic model coupled with EFEM and DBM of rolling bearing-rotor system. Mech Syst Signal Pr 134:106322

    Article  Google Scholar 

  7. Jacobson B (2011) History of rolling bearings. Tribol Online 6(3):155–159

    Article  Google Scholar 

  8. Dowson D, Hamrock BJ (1981) History of ball bearings. https://core.ac.uk/download/pdf/42861682.pdf

  9. Sun L, Li A (2016) Rolling-element bearings in China: from ancient times to the 20th century. Front Mech Eng-PRC 11:33–43

    Article  Google Scholar 

  10. Leibensperger R (2003) The conquest of friction. Mech Eng 125(11):46–49

    Article  Google Scholar 

  11. Dowson D (1998) History of tribology. 2nd ed. London

  12. Yan K, Wang N, Zhai Q, Zhu Y, Zhang J, Niu Q (2015) Theoretical and experimental investigation on the thermal characteristics of double-row tapered roller bearings of high speed locomotive. Int J Heat Mass Tran 84:1119–1130

    Article  Google Scholar 

  13. Malkin S (2008) Grinding technology: theory and application of machining with abrasives. Mcgraw Hill Press, New York

    Google Scholar 

  14. Wei Y, Qin Y, Balendra R, Jiang Q (2004) FE analysis of a novel roller form: a deep end-cavity roller for roller-type bearings. J Mater Process Tech 145(2):233–241

    Article  Google Scholar 

  15. Noguchi S, Hiruma K, Kawa H, Kanada T (2005) The influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution. Precis Eng 29(1):11–18

    Article  Google Scholar 

  16. Chen G, Mao F, Wang B (2012) Effects of off-sized cylindrical rollers on the static load distribution in a cylinder roller bearing. Proc Inst Mech Eng Part J-J Eng Tribol 226(8):687–696

    Article  Google Scholar 

  17. Chen G, Wang B, Mao F (2013) Effects of raceway roundness and roller diameter errors on clearance and runout of a cylindrical roller bearing. Proc Inst Mech Eng Part J-J Eng Tribol 227(3):275–285

  18. Cui Y, Deng S, Zhang W, Chen G (2017) The impact of roller dynamic unbalance of high-speed cylindrical roller bearing on the cage nonlinear dynamic characteristics. Mech Mach Theory 118:65–83

    Article  Google Scholar 

  19. Cai M, Xiao J (2008) A comprehensive dynamic model of double-row spherical roller bearing - model development and case studies on surface defects, preloads, and radial clearance. Mech Syst Signal Pr 22(2):467–489

    Article  Google Scholar 

  20. Ma F, Ji P, Li Z, Wu B, An Q (2015) Influences of off-sized rollers on mechanical performance of spherical roller bearings. Proc Inst Mech Eng Part K-J Multi-Body Dyn 229(4):1–13

    Google Scholar 

  21. Chen G, Wang B, Mao F (2013) Effects of raceway roundness and roller diameter errors on clearance and runout of a cylindrical roller bearing. Proc Inst Mech Eng Part J-J Eng Tribol 227(3):275–285

    Article  Google Scholar 

  22. Xiong W, Yang J, An Q (2019) Effect of bearing roller machining precision on the dynamic performance of high speed motorized spindle. J East China Univ Sci Technol 45(5):831–838

    Google Scholar 

  23. Yang J, Xiong W, An Q (2019) Effect of roller diameter error on the fatigue life of double row selfaligning roller bearing. J East China Univ Sci Technol 45(3):491–497

    Google Scholar 

  24. Kitamura M (2007) Trends and future views on rolling bearing technology. JTEKT Eng J 1003:9–16

    Google Scholar 

  25. Chen Y, Zhao X, Gao W, Hu F (2016) A new method for measuring the rotational accuracy of rolling element bearings. Rev Sci Instrum 87(12):125102

    Article  Google Scholar 

  26. Xia X, Ma W, Jie T (2007) Manufacturing technology of rolling element bearing. China Machine Press, Beijing

    Google Scholar 

  27. Khan ZA, Hadfield M, Tobe S, Wang Y (2005) Ceramic rolling elements with ring crack defects - a residual stress approach. Mat Sci Eng A-Struct 404(1–2):221–226

    Article  Google Scholar 

  28. Ebert FJ (2010) Fundamentals of design and technology of rolling element bearings. Chinese J Aeronaut 23(1):123–136

    Article  MathSciNet  Google Scholar 

  29. ISO 3290-1: 2014 (2014) Rolling bearings — Balls — Part 1: Steel balls. https://www.iso.org/standard/60132.html

  30. ISO 12297-1:2021 (2021) Rolling bearings — Cylindrical rollers — Part 1: Boundary dimensions, geometrical product specifications (GPS) and tolerance values for steel rollers. https://www.iso.org/standard/76434.html

  31. Lorenz SJ, Sadeghi F, Trivedi HK, Risado L, Kirsch M, Wang C (2021) A continuum damage mechanics finite element model for investigating effects of surface roughness on rolling contact fatigue. Int J Fatigue 143:105986

    Article  Google Scholar 

  32. Harsha SP, Sandeep K, Prakash R (2004) Non-linear dynamic behaviors of rolling element bearings due to surface waviness. J Sound Vib 272(3–5):557–580

    Article  Google Scholar 

  33. Maeda Y (2001) Development of high precision silicon nitride ceramic balls. Koyo Eng J English Edi 158:42–44

    Google Scholar 

  34. Sokhan SV, Maistrenko AL, Sorochenko VG, Voznyi VV, Kulych V, Gamanyuk M, Zubanev E (2018) The influence of machining conditions on performance of diamond grinding of silicon carbide ceramic balls. J Superhard Mate 40(6):402–413

    Article  Google Scholar 

  35. Shi HT, Bai XT (2020) Model-based uneven loading condition monitoring of full ceramic ball bearings in starved lubrication. Mech Syst Signal Pr 139:106583

    Article  Google Scholar 

  36. Wang X, Zhao P, Lyu B, Yuan J (2019) Research status of ultra-precision machining technologies for working surface of rolling bearings. China Mech Eng 30(11):1301–1309

    Google Scholar 

  37. Zhou F, Yuan J, Yao W, Lyu B, Nguyen D (2019) Review on ultra-precision machining technologies for precision balls. China Mech Eng 30(13):1528–1539

    Google Scholar 

  38. Fujiwara H, Kobayashi T, Kawase T, Yamauchi K (2010) Optimized logarithmic roller crowning design of cylindrical roller bearings and its experimental demonstration. Tribol T 53:909–916

    Article  Google Scholar 

  39. Cui L, He Y (2015) A new logarithmic profile model and optimization design of cylindrical roller bearing. Ind Lubr Tribol 67(5):498–508

    Article  Google Scholar 

  40. Lin Y, Shi Y, Xu Z, Zhu Z (2016) Analysis on grinding technology for convexity of extra large size cylindrical and tapered rollers. Bearing 4:19–21

    Google Scholar 

  41. Khonsari MM, Ghatrehsamani S, Akbarzadeh S (2021) On the running-in nature of metallic tribo-components: a review. Wear 474–475:203871

    Article  Google Scholar 

  42. Chen F, Wang J, Zhang G (2011) Elastohydrodynamic lubrication of tapered roller with logarithmic profile. J Mech Eng 47(19):143–148

    Article  Google Scholar 

  43. Zhang Y, Cao H, Kovalev A, Meng Y (2019) Numerical running-in method for modifying cylindrical roller profile under mixed lubrication of finite line contacts. J Tribol 141(4):041401

    Article  Google Scholar 

  44. Meng Y, Xu J, Jin Z, Prakash B, Hu Y (2020) A review of recent advances in tribology. Friction 8(2):221–300

    Article  Google Scholar 

  45. Duan H, Yu Q, Wang Z (2021) Design of logarithmic crowned roller for tapered roller bearings based on the elastohydrodynamic lubrication model. Ind Lubr Tribol 73(5):742–749

    Article  Google Scholar 

  46. Hu L, Wang W, Zhao Z, Kong L (2013) Lubricated contact analysis of roller large end-flange in double-row tapered roller bearing. Tribol 33(1):22–28

    Google Scholar 

  47. Ai S, Wang W, Wang Y, Zhao Z (2015) Temperature rise of double-row tapered roller bearings analyzed with the thermal network method. Tribol Int 87:11–22

    Article  Google Scholar 

  48. Ma F, Li Z, Qiu S, An Q (2016) Transient thermal analysis of grease-lubricated spherical roller bearings. Tribol Int 93:115–123

    Article  Google Scholar 

  49. Wang Y, Sun W, Zhang X, Li D (2018) Analysis method for the big side of tapered roller bearing with wind power and the end face contact of roller ball. Acta Energ Sol Sin 39(1):258–263

    Google Scholar 

  50. Majdoub F, Saunier L, Sidoroff-Coicaud C, Mevel B (2020) Experimental and numerical roller skew in tapered roller bearings. Tribol Int 145:106142

    Article  Google Scholar 

  51. Yang L, Xu T, Xu H, Wu Y (2018) Mechanical behavior of double-row tapered roller bearing under combined external loads and angular misalignment. Int J Mech Sci 142:561–574

    Article  Google Scholar 

  52. Yan K, Wang Y, Zhu Y, Hong J, Zhai Q (2016) Investigation on heat dissipation characteristic of ball bearing cage and inside cavity at ultra high rotation speed. Tribol Int 93:470–481

    Article  Google Scholar 

  53. Jain A, Singh A, Singh AP (2018) Effect of tribological parameters on sliding wear and friction coefficient which relates to preload loss in tapered roller bearing. Ind Lubr Tribol 71(1):61–73

    Article  Google Scholar 

  54. Sayles RS, Poon SY (1981) Surface topography and rolling element vibration. Precis Eng 3(3):137–144

    Article  Google Scholar 

  55. Rafsanjani A, Abbasion S, Farshidianfar A, Moeenfard H (2009) Nonlinear dynamic modeling of surface defects in rolling element bearing systems. J Sound Vib 319(3–5):1150–1174

    Article  Google Scholar 

  56. Ido M (1957) Studies on the method of the manufacture of miniature ball bearings. J Japan Soc Precis Eng 23(4):127–131

    Article  Google Scholar 

  57. Lv B, Yuan J, Yao Y, Wang Z (2006) Study on fixed abrasive lapping technology for ceramic balls. Mat Sci Forum 51:460–463

    Article  Google Scholar 

  58. Zhang J, Li G, Gao R, Yan B (2015) Dynamic analysis of grinding balls nased on no slipping. J Cent South Univ 46(7):2452–2458

    Google Scholar 

  59. Chen Z (2011) 3M7680 type steel ball grinding machine optimization design research. Dissertation of Soochow University: Soochow

  60. Yuan JL, Lv BH, Lin X, Zhang LB, Ji SM (2002) Research on abrasives in the chemical-mechanical polishing process for silicon nitride balls. J Mater Process Tech 129(1–3):171–175

    Article  Google Scholar 

  61. Zhou F, Yuan JL, Yao W, Li F (2016) Modeling and simulation on sphere-shaping of ceramic balls. J Huazhong U Sci 44(2):128–132

    Google Scholar 

  62. Zhou Z, Zhang J, Yuan JL (2007) Simulation of a cermaic ball lapping under dual rotating plates lapping mode. Int J Comput App Technol 29:247

    Article  Google Scholar 

  63. Lee R, Hwang Y, Chiou Y (2016) Lapping of ultra-precision ball surfaces. Part I. Concentric V-groove lapping system. Int J Mach Tools Manufact 46:1146–1156

  64. Wang D, Yin M, Sun H, Zhao Z (2019) Feasibility study on application of slider five-bar mechanism in grinding machine. Mech Sci Technol Aeros Eng 38(3):404–408

    Google Scholar 

  65. Lv BH (2007) Research on ceramic ball lapping and sphere-shaping mechsnism with rotated dual-plates machine. Dissertation of Harbin Institute of Technology: Harbin

  66. Zhang B, Nakajima A (2000) Spherical surface generation mechanism in the grinding of balls for ultraprecision ball bearings. Proc Instn Mech Eng Part J-J Eng 214:351–357

    Article  Google Scholar 

  67. Yuan JL, Wang ZW, Lv BH, Dai Y, Zhang J, Zhao P, Lou FY, Tao BC (2006) Simulation study on the developed eccentric V-grooves lapping mode for precise ball. Key Eng Mater 304:300–304

    Article  Google Scholar 

  68. Yuan JL, Tang KF, Wang ZW, Lv BH, He XH (2009) Lapping of WC-Co cemented carbide ball by eccentric dual-rotating V-groove lapping mode. Adv Mater Res 69–70:287–290

    Article  Google Scholar 

  69. Ren CZ, Xu Y, Lin B, Guo H, Peng Z (1996) The eccentric circular groove lapping technique for ceramic balls. Chinese J Mech Eng 9(1):45–48

    Article  Google Scholar 

  70. Ren CZ, Wang TY, Jin XM, Xu H (2002) Experimental research on the residual stress in the surface of silicon nitride ceramic balls. J Mater Process Tech 129(1–3):446–450

    Article  Google Scholar 

  71. Feng M, Wu Y, Yuan J, Zhao P (2017) Processing of high-precision ceramic balls with a spiral V-groove plate. Front Mech Eng 12(1):132–142

    Article  Google Scholar 

  72. Li X, Ke M, Zhu J, Zhou F, Lv B (2021) Numerical optimization on groove structure parameters of bearing ball with variable-radius V-groove. J Mech Elec Eng 38(2):222–227

    Google Scholar 

  73. Wang ZW, Lv BH, Yuan JL, Yang F (2009) On the evaluation of lapping uniformity for precision balls. Key Eng Mater 416:558–562

    Article  Google Scholar 

  74. Yu W, Liu D, Yuan JL, Deng QF, Yao WF, Jin CY (2011) Processing of lapping track in dual rotated plates eccentric lapping mode. Key Eng Mater 487:248–252

    Article  Google Scholar 

  75. Yao WF, Yuan JL, Lv BH, Deng QF (2012) Kinematics simulation of eccentric dual rotated-plates lapping for bearing balls. Adv Mater Res 565:312–317

    Article  Google Scholar 

  76. Zhang B, Nakajima A (2003) Dynamics of magnetic fluid support grinding of Si3N4 ceramic balls for ultraprecision bearings and its importance in spherical surface generation. Precis Eng 27(1):1–8

    Article  Google Scholar 

  77. Zhang B, Uematsu T, Nakajima A (1998) High efficiency and precision grinding of Si3N4 ceramic balls aided with magnetic fluid support by using diamond wheels. JSME Int J Ser C 41(3):499–505

    Article  Google Scholar 

  78. Lee R, Hwang Y, Chiou Y (2006) Lapping of ultra-precision ball surfaces. Part II. Eccentric V-groove lapping system. Int J Mach Tool Manufact 46:1157–1169

  79. Wang J, Zhang C, Wu Y (1998) Study on a lapping method for precision ceramic ball. Manuf Tech Mach Tool 19(9):34–36

    Google Scholar 

  80. Ma W (2013) High efficiency ultra-precision grinding of ceramic balls. Dissertation of Saga University: Saga

  81. Yuan JL, Chen LN, Zhao P, Chang M et al (2004) Study on sphere shaping mechanism of ceramic ball for lapping process. Key Eng Mat 259–260:195–200

    Article  Google Scholar 

  82. Yuan JL, Yao WF, Deng QF, Lv BH (2010) Research on V-groove angle of rotated dual-plates lapping machine. App Mech Mat 37–38:1125–1129

    Article  Google Scholar 

  83. Lv BH, Yao WF, Yuan JL (2013) Speed optimization for lapping plates in RDP lapping mode based on ADAMS. China Mech Eng 24(7):866–872

    Google Scholar 

  84. Kang J, Hadfield M (2001) A novel eccentric lapping machine for finishing advanced ceramic balls. Proc Inst Mech Eng Part B-J Eng Manuf 215:781–795

    Article  Google Scholar 

  85. Kang J, Hadfield M (2001) Parameter optimization by Taguchi methods for finishing advanced ceramic balls using a novel eccentric lapping machine. Proc Inst Mech Eng Part B-J Eng Manuf 215:69–78

    Article  Google Scholar 

  86. Kang J, Hadfield M (2005) The polishing process of advanced ceramic balls using a novel eccentric lapping machine. Proc Inst Mech Eng Part B-J Eng Manuf 219(7):493–503

    Article  Google Scholar 

  87. Kang J, Hadfield M (2005) Examination of the material removal mechanisms during the lapping process of advanced ceramic rolling elements. Wear 258(1–4):2–12

    Article  Google Scholar 

  88. Darmiyani MR, Amirabadi H, Khosravi M (2021) Theoretical and experimental study of ceramic balls lapping with eccentric plates and eccentric V-groove. Int J Adv Manuf Tech 116(11):3417–3430

    Article  Google Scholar 

  89. Pasichnyi O (2019) Technology precision machining of ceramic balls in the V-grooves of variable curvature. In: J. Zhang et al. (eds.), Simulation and experiments of material-oriented ultra-precision machining, Springer Tracts in Mechanical Engineering. Springer, Singapore, pp 237–264

  90. Zhao P, Guo W, Feng M, Lv B, Deng QF, Yuan JL (2013) A novel lapping method for high precision balls based on variable-radius V-groove. J Micro Nanomanuf 1:041007

    Google Scholar 

  91. Zhou F, Yao W, Yuan J, Lyu B, Zhao T, Zhao P (2021) Experimental study on lapping ceramic balls with variable-radius groove plate. Adv Mech Eng 13(7):1–11

    Article  Google Scholar 

  92. Yuan JL, Xiang Z, Lv B, Zhao P (2019) Research on optimization experiment for precision balls with variable-radius groove in finishing process. J Zhejiang Univ Tech 47(2):140–145

    Google Scholar 

  93. Guo W, Yuan J, Zhou F, Xiang Z, Zhao P, Lyu B (2019) Theoretical and experimental research on processing balls with eccentric variable-radius V-groove. J Mech Eng 55(9):183–190

    Article  Google Scholar 

  94. Pedroso MPG, Fortulan CA (2019) Model based design applied to ceramic balls grinding. Procedia CIRP 81:306–309

    Article  Google Scholar 

  95. Zhou F, Yao W, Yuan J, Lyu B, Zhao T, Zhao P (2021) Experimental study on lapping ceramic balls with variableradius groove plate. Adv Mech Eng 13(7):1–11

    Article  Google Scholar 

  96. Huang C, Zou B, Liu Y, Zhang S, Huang C, Li S (2016) Study on friction characterization and wear-resistance properties of Si3N4 ceramic sliding against different high-temperature alloys. Ceram Int 42(15):17210–17221

    Article  Google Scholar 

  97. Hwang SS, Vasiliev AL, Padture NP (2007) Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids. Mat Sci Eng A-Struct 464(1–2):216–224

    Article  Google Scholar 

  98. Aramaki H, Shoda Y, Morishita Y, Sawamoto T (1988) The performance of ball bearings with silicon nitride ceramic balls in high speed spindles for machine tools. J Tribo 110(4):693–698

    Article  Google Scholar 

  99. Sharma P, Sharma S, Khanduja D (2015) On the use of ball milling for the production of ceramic powders. Mat Manuf Process 30(11):1370–1376

    Article  Google Scholar 

  100. Zhao L, Jiang Z, Zhang C (2021) Residual stress and fracture toughness of sintered body of ZrO2-GO composite ceramics material. Ceram Int 47(1):388–392

    Article  Google Scholar 

  101. Gabelli A, Morales-Espejel GE (2019) A model for hybrid bearing life with surface and subsurface survival. Wear 422:223–234

    Article  Google Scholar 

  102. Singh Samra P, Singh S, Singh L (2019) Development of magnetically assisted lapping process for nano-finishing of alumina balls. Mach Sci Technol 23(1):153–169

    Article  Google Scholar 

  103. Maystrenko AL, Borimsky AI, Voznyy VV, Sorochenko VG, Hamaniuk MP, Zubaniev EM (2021) Changing the performance of diamond finishing of ceramic balls of boron carbide and silicon nitride. J Superhard Mater 43(2):135–144

    Article  Google Scholar 

  104. Jang J, Jang G, Lee J, Cho Y (2016) Cinar Y Fatigue life estimations of solid-state drives with dummy solder balls under vibration. Int J Fatigue 88:42–48

    Article  Google Scholar 

  105. Subhash G, Maiti S, Geubelle PH, Ghosh D (2008) Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics. J Am Ceram Soc 91(9):2777–2791

    Article  Google Scholar 

  106. Hadfield M, Tobe S, Stolarski TA (1994) Subsurface crack investigation on delaminated ceramic elements. Tribol int 27(5):359–367

    Article  Google Scholar 

  107. Ghezzi I, Komba EWH, Tonazzi D, Bouscharain N et al (2018) Damage evolution and contact surfaces analysis of high-loaded oscillating hybrid bearings. Wear 406:1–12

    Article  Google Scholar 

  108. Childs THC, Yoon HJ (1992) Magnetic fluid grinding cell design. CIRP Ann 41(1):343–346

    Article  Google Scholar 

  109. Komanduri R, Lucca DA, Tani Y (1997) Technological advances in fine abrasive processes. CIRP Ann 46(2):545–596

    Article  Google Scholar 

  110. Umehara N, Kalpakjian S (1994) Magnetic fluid grindingıa new technique for finishing advanced ceramics. CIRP Ann 43(1):185–188

    Article  Google Scholar 

  111. Childs THC, Jones DA, Mahmood S, Zhang B et al (1994) Magnetic fluid grinding mechanics. Wear 175(1–2):189–198

    Article  Google Scholar 

  112. Childs THC, Mahmood S, Yoon HJ (1994) The material removal mechanism in magnetic fluid grinding of ceramic ball bearings. Proc Inst Mech Eng Part B-J Eng Manuf 208(1):47–59

    Article  Google Scholar 

  113. Childs THC, Mahmood S, Yoon HJ (1995) Magnetic fluid grinding of ceramic balls. Tribol Int 28(6):341–348

    Article  Google Scholar 

  114. Raghunandan M, Umehara N, Noori Khajavi A, Komanduri R (1997) Magnetic float polishing of ceramics. J Manuf Sci E-T ASME 119:520–528

    Article  Google Scholar 

  115. Hou Z, Komanduri R (1998) Magnetic field assisted finishing of ceramics - part I: thermal model. J Tribol T ASME 120(4):645–651

  116. Hou Z, Komanduri R (1998) Magnetic field assisted finishing of ceramics - part II: on the thermal aspects of magnetic float polishing (MFP) of ceramic balls. J Tribol T ASME 120(4):652–659

  117. Childs THC, Moss DJ (2001) Wear and cost issues in magnetic fluid grinding. Wear 249(5–6):509–516

    Article  Google Scholar 

  118. Komanduri R, Hou ZB, Umehara N, Raghunandan M et al (1999) A“gentle”method for finishing Si3N4 balls for hybrid bearing applications. Tribol Lett 7(1):39–49

    Article  Google Scholar 

  119. Raghunandan M, Komanduri R (1998) Finishing of silicon nitride balls for high-speed bearing applications. J Manuf Sci Eng T ASME 120(2):376–386

  120. Umehara N, Kato K (1996) Magnetic fluid grinding of advanced ceramic balls. Wear 200(1–2):148–153

    Article  Google Scholar 

  121. Umehara N, Kirtane T, Gerlick R, Jain V, Komanduri R (2006) A new apparatus for finishing large size/large batch silicon nitride (Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP). Int J Mach Tools Manufact 46(2):151–169

    Article  Google Scholar 

  122. Jiang M, Wood NO, Komanduri R (1998) On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) workmaterial with various abrasives. Wear 220(1):59–71

    Article  Google Scholar 

  123. Komanduri R, Umehara N, Raghunandan M (1996) On the possibility of chemo-mechanical action in magnetic float polishing of silicon nitride. J Tribol 118(4):721–727

    Article  Google Scholar 

  124. Komanduri R (1996) On material removal mechanisms in finishing of advanced ceramics and glasses. CIRP Ann 45(1):509–514

    Article  Google Scholar 

  125. Jiang M (1998) Finishing of advanced ceramic balls for bearing applications by magnetic float polishing (MFP) involving fine polishing followed by chemo-mechanical polishing (CMP). Dissertation of Oklahoma State University

  126. Xiao X, Li G, Mei H, Yan Q, Lin H, Zhang F (2020) Polishing of silicon nitride ceramic balls by clustered magnetorheological finish. Micromachines 11:304

    Article  Google Scholar 

  127. Chang FY, Childs THC (1998) Non-magnetic fluid grinding. Wear 223:7–12

    Article  Google Scholar 

  128. Childs THC, Moss DJ (2000) Grinding ratio and cost issues in magnetic and non-magnetic fluid grinding. CIRP Ann 49(1):261–264

    Article  Google Scholar 

  129. Ma W, Zhang B, Nakajima A, Mawatari T (2015) Electrolytic in-process dressing grinding of ceramic balls. Int J Adv Manuf Technol 79:1153–1160

    Article  Google Scholar 

  130. Wu YB, Xu WX, Fujimoto M, Tachibana T (2011) Ceramic balls machining by centerless grinding using a surface grinder. Adv Mater Res 325:103–109

    Article  Google Scholar 

  131. Vasin AN, Iznairov BM, Bochkarev AP (2013) More effective correction of shape errors in centerless ball grinding. Russ Eng Res 33(10):599–601

    Article  Google Scholar 

  132. Wu YB, Xu W, Fujimoto M, Tachibana T (2012) A new ball machining method by centreless grinding using a surface grinder. Int J Abrasive Technol 5(2):107–118

    Article  Google Scholar 

  133. Xu W, Cui D, Wu Y (2016) Sphere forming mechanisms in vibration-assisted ball centreless grinding. Int J Mach Tool Manufact 108:83–94

    Article  Google Scholar 

  134. Vasin AN, Iznairov BM, Bochkarev AP (2013) Shaping in the centerless grinding of hollow spheres. Russ Eng Res 33(8):490–494

    Article  Google Scholar 

  135. Vasin AN, Iznairov BM, Bochkarev AP (2014) Interaction of the blank with the wheel in the centerless grinding of balls. Russ Eng Res 34(2):112–114

    Article  Google Scholar 

  136. Zakharov OV, Balaev AF, Bochkarev AP (2015) Shaping of spherical surfaces on centerless superfinishing machines with longitudinal supply. Russ Eng Res 35(4):264–266

    Article  Google Scholar 

  137. Reshetnikova OP, Iznairov BM, Vasin AN, Belousova NV, Panfilova AV (2020) Correction of form errors during centerless grinding of balls. J Phys Conf Ser 1515(4):042097

    Article  Google Scholar 

  138. Reshetnikova OP, Iznairov BM, Vasin AN, Belousova NV, Panfilova AV (2020) Base error for centerless grinding of spherical rolling elements. IOP Conf Ser Mater Sci Eng 862:032010

    Article  Google Scholar 

  139. Chiang CJ, Fong ZH, Tseng JT (2009) Computerized simulation of thread form grinding process. Mech Mach Theory 44(4):685–696

    Article  MATH  Google Scholar 

  140. Yang L, Wang L, Liu Q, Tian X (2018) Grinding performance of a new micro-crystalline corundum wheel when form-grinding automobile gears. Int J Adv Manuf Tech 96(1–4):857–870

    Article  Google Scholar 

  141. Wang L, Zou G, Li X, Wang X (2011) Non-contact measurement type automatic sorting machine for cylindrical rollers. Bearing 3:34–37. https://doi.org/10.19533/j.issn1000-3762.2011.03.015

    Article  Google Scholar 

  142. Xue J, Huijuan Y, Jian F, Junzhong L, Enjing Z (2014) Roller bearing automatic sorting device. 2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control pp 760–763. https://doi.org/10.1109/IMCCC.2014.161

  143. Hashimoto F, Gallego I, Oliveira JFG, Barrenetxea D et al (2012) Advances in centerless grinding technology. CIRP Ann 61(2):747–770

    Article  Google Scholar 

  144. Rowe W, Barash M, Koenigsberger F (1965) Some roundness characteristics of centreless grinding. Int J Mach Tool Des Res 5:203–215

    Article  Google Scholar 

  145. Wegener K, Bleicher F, Krajnik P, Hoffmeister HW, Brecher C (2017) Recent developments in grinding machines. CIRP Ann 66(2):779–802

    Article  Google Scholar 

  146. Barrenetxea D, Mancisidor I, Beudaert X, Munoa J (2018) Increased productivity in centerless grinding using inertial active dampers. CIRP Ann 67(1):337–340

    Article  Google Scholar 

  147. Rowe WB, Miyashita M, Koenig W (1989) Centerless grinding research and its application in advanced manufacturing technology. CIRP Ann 38(2):1–9

    Article  Google Scholar 

  148. Furukawa Y, Miyashita M, Shiozaki S (1971) Vibration analysis and work-rounding mechanism in centerless grinding. Int J Mach Tool Des Res 11(2):145–175

    Article  Google Scholar 

  149. Ohmor H, Li W, Makinouchi A, Bandyopadhyay BP (2000) Efficient and precision grinding of small hard and brittle cylindrical parts by the centerless grinding process combined with electro-discharge truing and electrolytic in-process dressing. J Mater Process Tech 98(3):322–327

    Article  Google Scholar 

  150. Xu W, Wu Y (2018) A novel approach to fabricate high aspect ratio micro-rod using ultrasonic vibration-assisted centreless grinding. Int J Mech Sci 141:21–30

    Article  Google Scholar 

  151. Dhavlikar MN, Kulkarni MS, Mariappan V (2003) Combined Taguchi and dual response method for optimization of a centerless grinding operation. J Mater Process Tech 132(1–3):90–94

    Article  Google Scholar 

  152. Otaghvar MH, Hahn B, Werner H, Omiditabrizi H, Bähre D (2019) Optimization of centerless through-feed grinding using 3D kinematic simulation. Procedia CIRP 79:308–312

    Article  Google Scholar 

  153. Xu WX, Wu YB, Sato T, Lin WM (2009) Simulation investigation of tangential-feed centerless grinding process performed on surface grinder. Mater Sci Forum 626:23–28

    Article  Google Scholar 

  154. Xu WX, Wu YB, Sato T, Liang Z, Lin WM (2009) Experimental study of tangential-feed centerless grinding process performed on surface grinder. Mater Sci Forum 626:17–22

    Article  Google Scholar 

  155. Wu Y, Kondo T, Kato M (2005) A new centerless grinding technique using a surface grinder. J Mater Process Tech 162:709–717

    Article  Google Scholar 

  156. Xu W, Wu Y (2011) A new in-feed centerless grinding technique using a surface grinder. J Mater Process Technol 211:141–149

    Article  Google Scholar 

  157. Xu W, Wu Y (2011) A new through-feed centerless grinding technique using a surface grinder. J Mater Process Tech 211:1599–1605

    Article  Google Scholar 

  158. Xu W, Wu Y, Sato T, Lin W (2010) Effects of process parameters on workpiece roundness in tangential-feed centerless grinding using a surface grinder. J Mater Process Tech 210:759–766

    Article  Google Scholar 

  159. Gao Z, Gao H (2016) Analysis of grinding wheel profile in feeding-through centerless grinding of tapered roller. J Mech Eng Res Dev 39(1):134–141

    Google Scholar 

  160. Yao W, Yuan J, Zhong M, Wang C, Zhou F (2019) Review on precision machining technology for outer diameters of cylindrical rollers. China Mech Eng 30(10):1195–1206

    Google Scholar 

  161. Hashimoto F (2020) Dynamic rounding stability in through-feed centerless grinding. Inventions 5(2):17

    Article  Google Scholar 

  162. Wen S, Xu S, Wang Y, Liu Z (2012) Determination of the helical guide wheel angle for the centerless grinding of tapered roller crown. Bearing 1:23–24. https://doi.org/10.19533/j.issn1000-3762.2012.01.008

    Article  Google Scholar 

  163. Gao Z, Zhang J, Zhang B, Bi X (2015) Analysis on straightness for cone profile of tapered rollers during through-feed and centerless grinding process. Bearing 7:13–17

    Google Scholar 

  164. Albizuri J, Fernandes MH, Garitaonandia I, Sabalza X, Uribe-Etxeberria R, Hernandez JM (2006) An active system of reduction of vibrations in a centerless grinding machine using piezoelectric actuators. Int J Machi Tools Manuf 47(10):1607–1614

    Article  Google Scholar 

  165. Alvarez J, Barrenetxea D, Marquinez JI, Bediaga I, Gallego I (2011) Effectiveness of continuous workpiece speed variation (CWSV) for chatter avoidance in throughfeed centerless grinding. Int J Machi Tools Manuf 51(12):911–917

    Article  Google Scholar 

  166. Nieto FJ, Etxabe JM, Giménez JG (1998) Influence of contact loss between workpiece and grinding wheel on the roundness errors in centreless grinding. Int J Machi Tools Manuf 38(10):1371–1398

  167. Brecher C, Hannig S (2008) Simulation of plunge centerless grinding processes. Prod Eng Res Devel 2:91–95

    Article  Google Scholar 

  168. Barrenetxea D, Alvarez J, Madariaga J, Gallego I (2011) Stability analysis and time domain simulation of multiple diameter parts during infeed centerless grinding. CIRP Ann Manuf Tech 60(1):351–354

    Article  Google Scholar 

  169. Barrenetxea D, Alvarez J, Marquinez JI, Gallego I, Perello IM, Krajnik P (2014) Stability analysis and optimization algorithms for the set-up of infeed centerless grinding. Int J Mach Tools Manuf 84:17–32

  170. Chang SH, Farris TN, Chandrasekar S (2008) Experimental analysis on evolution of superfinished surface texture. J Mater Process Tech 203(1–3):365–371

    Article  Google Scholar 

  171. Chang SH, Balasubramhanya S, Chandrasekar S, Farris TN, Hashimoto F, Shaw MC (1997) Forces and specific energy in superfinishing of hardened steel. CIRP Ann 46(1):257–260

    Article  Google Scholar 

  172. Hashimoto F, Yamaguchi H, Krajnik P, Wegener K et al (2016) Abrasive fine-finishing technology. CIRP Ann Manuf Techn 65(2):597–620

    Article  Google Scholar 

  173. Fang FZ, Zhang XD, Gao W, Guo YB et al (2017) Nanomanufacturing - perspective and applications. CIRP Ann 66(2):683–705

    Article  Google Scholar 

  174. Hemingway EL (1940) Superfinishing: a new process for finishing bearing surfaces. Aircr Eng Aerosp Tec 12(7):216–219

    Article  Google Scholar 

  175. Jiang Q, Ge Z (2002) Simulation on topography of superfinished roller surfaces. Sci China Ser B 45(2):122–126

    Article  Google Scholar 

  176. Nakayama K, Hashimoto H (1995) Experimental investigation of the superfinishing process. Wear 185(1–2):173–182

    Article  Google Scholar 

  177. Varghese B, Malkin S (2001) Rounding and lobe formation during superfinishing. J Manuf Processes 3(2):102–107

    Article  Google Scholar 

  178. Micallef C, Zhuk Y, Aria AI (2020) Recent progress in precision machining and surface finishing of tungsten carbide hard composite coatings. Coatings 10(8):731

    Article  Google Scholar 

  179. Gao Z, Gao H (2016) Theoretical analysis and confirmatory measurement for profile grinding of guide roller for tapered roller superfinishing. J Mech Eng Res Dev 39(1):62–74

    Google Scholar 

  180. Courbon C, Valiorgue F, Claudin C, Jacquier M et al (2016) Influence of some superfinishing processes on surface integrity in automotive industry. Procedia CIRP 45:99–102

    Article  Google Scholar 

  181. Liu CR, Mittal S (1995) Single-step superfinishing using hard machining resulting in superior surface integrity. J Manuf Syst 14(2):129–133

    Article  Google Scholar 

  182. Gao Z, Ma W, Deng X, Chen S (2013) Analysis on exact shape surface and its grinding of guide roller for superfinishing of tapered roller. China Mech Eng 24(17):2310–2316

    Google Scholar 

  183. Li Q (2014) Research on superfinishing modification of tapered roller crowing. Dissertation of Henan University of Science and Technology

  184. Xue J, Yang B, Jia S (2016) Analysing cutting edge of taper roller and oilstone in fixed posture through-feed superfinishing. Mech Sci Technol Aerospace Eng 36(8):1244–1249

    Google Scholar 

  185. Mallipeddi D, Norell M, Sosa M, Nyborg L (2019) The effect of manufacturing method and running-in load on the surface integrity of efficiency tested ground, honed and superfinished gears. Tribol Int 131:277–287

    Article  Google Scholar 

  186. Chang S, Farris TN, Chandrasekar S (2000) Contact mechanics of superfinishing. J Tribol 122(2):388–393

    Article  Google Scholar 

  187. Jia S, Ma Y, Shi K, Shi J, Gao P (2017) Analysis on sliding of rollers during centerless through-feed superfinishing of tapered rollers. Bearing 9:13–17

    Google Scholar 

  188. Gao Z, Yang X, Gao H, Guo X (2018) Analysis of surface profile of the cone-cylinder match guide rollers for superfinishing of tapered rollers with cone. J Mech Eng 54(21):173–182

    Article  Google Scholar 

  189. Gao Z, Yang X, Guo X (2018) Analysis on convexity during superfinishing of tapered rollers with cone cylinder matching guide rollers. Bearing 12:17–23

    Google Scholar 

  190. Yang Y (2019) Guide roller’s ideal surface and its driving characteristics in through-feed superfinishing of tapered rollers. Dissertation of Henan University of Science and Technology

  191. Ventzel S, Cioc S, Marinescu I (2006) A wear model and simulation of superfinishing process: analysis for the superfinishing of bearing rings. Wear 260(9–10):1061–1069

    Article  Google Scholar 

  192. Liu CR, Mittal S (1998) Optimal pre-stressing the surface of a component by superfinish hard turning for maximum fatigue life in rolling contact. Wear 219(1):128–140

    Article  Google Scholar 

  193. Zhu W, Li K, Zhu H, Chi Y (2020) Grinding force model and experimental study of tapered roller ball base surface. China Mech Eng 31(6):679–687

    Google Scholar 

  194. Wang X, Wang Y, Wang Y (2008) Discussion on machining technology for spherical fiducial surface of tapered roller. J Harbin Bearing 29(1):32–34

    Google Scholar 

  195. Zhang J, Li H, Fang F (2012) Grinding and Analysis of the ball base surface of tapered roller by forming method. Bearing 10:23–24

    Google Scholar 

  196. Wang L, Zhang W, Chen Y, Yang R (2017) Research on online detection of grinding of tapered roller ball surface and grouping technology. Machi Tool Hydraulics 45(1):101–103

    Google Scholar 

  197. Cao S (1994) Positional accuracy of spherical datum surface in through grinding of tapered roller. Bearing 4:18–21

    Google Scholar 

  198. Zheng Z, Zhao X (1993) Run-out error of spherical datum surface of tapered roller. Bearing 2:39–40

    Google Scholar 

  199. Feng M, Yao W, Zhou W, Lv B, Deng Q, Yuan J (2014) Experimental research on double-side lapping of cylindrical roller by Taguchi methods. Key Eng Mater 589–590:485–490

    Google Scholar 

  200. Zhou W, Yao W, Feng M, Lv B, Deng Q (2014) The polishing process of cylindrical rollers by using a double-side lapping machine. Key Eng Mater 589–590:447–450

    Google Scholar 

  201. Yuan J, Yao W, Zhao P, Lyu B, Chen Z, Zhong M (2015) Kinematics and trajectory of both-sides cylindrical lapping process in planetary motion type. Int J Mach Tools Manufact 92:60–71

    Article  Google Scholar 

  202. Yao W (2015) Study on processing method for high precision bearing rollers with high consistency based on uniform distribution of cylindrical processing trajectory. Dissertation of Zhejiang University of Technology

  203. Yao W, Yuan J, Jiang L, Feng K, Chen F (2018) Study on both-side cylindrical ultra-precision lapping and polishing processes in eccentric rotations. China Mech Eng 29:2327–2334

    Google Scholar 

  204. Nguyen DN, Dao TP, Prakash C, Singh S, Pramanik A, Krolczyk G, Pruncu CI (2020) Machining parameter optimization in shear thickening polishing of gear surfaces. J Mater Res Technol 9(3):5112–5126

    Article  Google Scholar 

  205. Yao W, Yuan J, Jiang L, Feng K, Chen F (2018) Study on both-side cylindrical ultra-precision lapping and polishing processes in eccentric rotations. China Mech Eng 29(19):2327–2334

    Google Scholar 

  206. Su J, Yuan J, Zhang S, Lv B (2018) Optimization experiment on eccentric lapping of cylindrical rollers. Nanotech Precis Eng 1:197–204

    Article  Google Scholar 

  207. Jiang L, He Y, Luo J (2015) Chemical mechanical polishing of steel substrate using colloidal silica-based slurries. App Surf Sci 330:487–495

    Article  Google Scholar 

  208. Piao Z, Wen D, Yin L, Zhao M (2019) Ultra-smooth Cu surface fabricated by hydrodynamic suspension polishing technique. Precis Eng 57:189–194

    Article  Google Scholar 

  209. Yao W, Chu Q, Lyu B, Wang C, Shao Q, Feng M, Wu Z (2022) Modeling of material removal based on multi-scale contact in cylindrical polishing. Int J Mech Sci 223:107287

    Article  Google Scholar 

  210. He Y (2014) Research on the double disc and eccentric straight groove lapping method for cylindrical rollers, Dissertation of Tianjin University

  211. Cai Z (2016) Design of circulatory system for roller cylindrical surface processing with double-disc straight groove lapping process. Dissertation of Tianjin University

  212. Wang J (2018) The design of magnetic grinding plate for grinding process of cylindrical rollers’ cylindrical surfaces. Dissertation of Tianjin University

  213. Ren C, Deng X, He Y, Chen G, Jin X (2017) Cylindrical-component grinding device, and workpiece advancing apparatus and grinding method. US Patent: US201715619498

  214. Ren C, Deng X, He Y, Chen G, Jin X (2017) Double-disc straight groove cylindrical-component surface grinding disc. US Patent: US201715619443

  215. Yang L, Ren C (2019) Simulation and propulsion experimental analysis of electromagnetic propulsion device for cylindrical roller. Chinese J Eng Desi 26(5):611–618

    Google Scholar 

  216. Deng X, Ren C, Chen Y, Chen G et al (2020) Research on material selection of lapping tools for double disc and linear groove lapping method based on friction and wear experiment. Chinese J Eng Desi 27(6):720–728

    Google Scholar 

  217. Deng X, Chen G, He C, Zheng R et al (2021) Properties of grinding tool material for double-disc straight groove grinding method based on friction and wear experiment. Int J Adv Manuf Technol 114:2243–2259

    Article  Google Scholar 

  218. He Q, He C, Chen G, Liu W et al (2021) Analysis and experiment on stable rotating motion of cylindrical roller based on double disc straight groove lapping. China Mech Eng 1:17. http://kns.cnki.net/kcms/detail/42.1294.th.20201228.1702.032.html

  219. Peng C (2016) Research on machining method and key technology of high precision tapered roller. Dissertation of Zhejiang University of Technology

  220. Ren C, Yang Y, Chen Y, Deng X, Yan C, Jin X, Liu W, Zhang J (2018) A grinding disc and equipment for finishing the rolling surface of tapered roller. China Patent: CN201810850331.2

  221. Ren C, Zhang J, Chen G, Liu W, Jin X, Yan C, Chen Y, Zhang Y (2018) A grinding disc and equipment for finishing the rolling surface of tapered roller with crown. China Patent: CN201821208933.X

  222. Liang L, Chen G, Zhang J, Geng K, He C, Ren C (2021) Theoretical solution and profile analysis of working surface for double-disk grinding of tapered roller. J Mech Eng 57(13):252–261

    Article  Google Scholar 

  223. Yao W, Lu B, Wang C, Fei X, Zhang L (2021) Modeling, simulation, and experimental verification on material removal and rounding process of centerless cylindrical finishing with free abrasives and soft pad. Int J Adv Manuf Technol 114:1443–1455

    Article  Google Scholar 

  224. Nguyen D, Chau N, Dao T, Prakash C, Singh S (2019) Experimental study on polishing process of cylindrical roller bearings. Meas Control-UK 52(9–10):1272–1281

    Article  Google Scholar 

  225. Chang G, Yan B, Hu R (2002) Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives. Int J Mach Tools Manufact 42(5):575–583

    Article  Google Scholar 

  226. Zhao Y, Jiang S (2000) New kind of machine tool for magnetic abrasive finishing complex surface. Chiness J Mech Eng 36(3):100–103

    Article  Google Scholar 

  227. Kim J, Choi M (1997) Development of the magneto-electrolytic-abrasive polishing system (MEAPS) and finishing characteristics of a Cr-coated roller. Int J Mach Tools Manufact 37(7):997–1006

    Article  Google Scholar 

  228. Yan B, Chang G, Cheng T, Hsu R (2003) Electrolytic magnetic abrasive finishing. Int J Mach Tools Manufact 43(13):1355–1366

    Article  Google Scholar 

  229. Umehara N, Komanduri R (1996) Magnetic fluid grinding of HIP-Si3N4 rollers. Wear 192(1–2):85–93

    Article  Google Scholar 

  230. Zhu W, Beaucamp A (2020) Compliant grinding and polishing: a review. Int J Mach Tools Manufact 158:103634

    Article  Google Scholar 

  231. Wang L, Sindle R, Gu L (2000) Rolling contact silicon nitride bearing technology: a review of recent research. Wear 246(1–2):159–173

    Article  Google Scholar 

  232. Wei Z, Li L, She D, Xu W (2018) Effect of electrochemical mechanical machining on surface quality and convexity of bearing rollers. Surf Technol 47(7):119–124

    Google Scholar 

  233. Xu W, Wei Z, Sun J, Li Q (2012) Surface quality prediction and processing parameters determination on electromechanical mechanical finishing of bearing roller. China Mech Eng 23(5):525–530

    Google Scholar 

  234. Muzakkir SM, Hirani H, Thakre GD (2013) Lubricant for heavily loaded slow-speed journal bearing. Tribol T 56(6):1060–1068

    Article  Google Scholar 

  235. Wei Z, Xu W, Tao B, Song J, Wei L, Lu Y (2013) Crown shaping technique of bearing raceway by electrochemical mechanical machining. Int J Electrochem Sci 8(2):129–136

    Google Scholar 

  236. Wei Z (2013) Key issues of electrochemical mechanical machining with non-uniform mechanical effect. Dissertation of Dalian University of Technology

  237. Li M, Yuan J, Wu Z, Lv B, Sun L, Zhao P (2015) Progress in ultra-precision machining methods of complex curved parts. J Mech Eng 51(5):178–191

    Article  Google Scholar 

  238. Dai W, Lyu B, Weng H, Shao Q (2016) Optimization experiment of acoustic assisted shear thickening polishing of cylindrical surface. Surf Technol 45(2):188–193

    Google Scholar 

  239. Chen S, Lyu B, He Q, Yang Y, Shao Q (2019) Simulation and experimental study on material removal function of shear thickening polishing cylindrical surface. Surf Technol 48(10):355

    Google Scholar 

  240. Li M, Lyu B, Yuan J, Dong C, Dai W (2015) Shear-thickening polishing method. Int J Mach Tools Manufact 94:88–99

    Article  Google Scholar 

  241. Li M, Lyu B, Yuan J, Yao W, Zhou F, Zhong M (2016) Evolution and equivalent control law of surface roughness in shear-thickening polishing. Int J Mach Tools Manufact 108:113–126

    Article  Google Scholar 

  242. Li M, Huang Z, Dong T, Mao M, Lyu B, Yuan J (2018) Surface integrity of bearing steel element with a new high-efficiency shear thickening polishing technique. Procedia CIRP 71:313–316

    Article  Google Scholar 

  243. Zupan S, Prebil I (2001) Carrying angle and carrying capacity of a large single row ball bearing as a function of geometry parameters of the rolling contact and the supporting structure stiffness. Mech Mach Theory 36(10):1087–1103

    Article  MATH  Google Scholar 

  244. Tong VC, Hong SW (2017) Modeling and analysis of double-row cylindrical roller bearings. J Mech Sci Technol 31(7):3379–3388

    Article  MathSciNet  Google Scholar 

  245. Brecher C, Fey M, Bartelt A, Hassis A (2016) Design and test rig experiments of a high speed tapered roller bearing for main spindle applications. Procedia CIRP 46:533–536

    Article  Google Scholar 

  246. Harris TA, Ragen MA, Spitzer RF (1992) The effect of hoop and material residual stresses on the fatigue life of high speed rolling bearings. Tribol T 35(1):194–198

    Article  Google Scholar 

  247. Pape F, Maiss O, Denkena B, Poll G (2019) Enhancement of roller bearing fatigue life by innovative production processes. Ind Lubr Tribol 7(8):1003–1006

    Article  Google Scholar 

  248. Pape F, Coors T, Poll G (2020) Studies on the influence of residual stresses on the fatigue life of rolling bearings in dependence on the production processes. Front Mech Eng 6:56

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the National Natural Science Foundation of China (Nos. 52175430, 51935008, and 52105478), Open Fund of Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, and Open Fund of Xinchang Research Institute of Zhejiang University of Technology for the support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation was performed by CH, JZ, and KG. Data collection and analysis were performed by SW, ML, and XZ. The first draft of the manuscript was written by CH. CR commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chunlei He or Chengzu Ren.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Zhang, J., Geng, K. et al. Advances in ultra-precision machining of bearing rolling elements. Int J Adv Manuf Technol 122, 3493–3524 (2022). https://doi.org/10.1007/s00170-022-10086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10086-6

Keywords

Navigation