Skip to main content
Log in

Real-time event-based platform for the development of digital twin applications

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Digital twin has become essential to modern industrial developments and production paradigms. Digital twin provides support to users and processes in decision-making creating high-fidelity virtual models from physical objects in order to simulate their behaviors, predict their states, provide feedbacks, and if possible be optimized by themselves. The literature indicates an urgent need to develop digital twin applications. These applications require a digital platform that complies with DT requirements and allows all physical objects, virtual models, and industrial systems to communicate and integrate with each other. The contribution of this paper is to provide an analysis about digital twin (meaning and modeling), and to present a platform that works as: (1) a modern distributed system that runs as a cluster and can elastically scale to handle and integrate all the business applications, systems, and production data even the most massive data volumes; (2) a storage system that keeps data as long as necessary and provides real guarantees in delivery, persistence, performance (real time), reliability, and processing; (3) a real-time event-based platform that supports the requirements of digital twin applications including the management and support of different digital twin versions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

References

  1. Abadi M, Agarwal A, Barham P, Brevdo E (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Retrieved from TensorFlow: https://www.tensorflow.org/

  2. Alexopoulos K, Sipsas K, Xanthakis E, Makris S, Mourtzis D (2018) An industrial Internet of things based platform for context-aware information services in manufacturing. Int J Comput Integr Manuf 31:1–14. https://doi.org/10.1080/0951192X.2018.1500716

    Article  Google Scholar 

  3. Angulo P, Guzmán C, Jiménez G, Romero D (2016) A service-oriented architecture and its ICT infrastructure to support eco-efficiency performance monitoring in manufacturing enterprises. Int J Comput Integr Manuf:202–214. https://doi.org/10.1080/0951192X.2016.1145810

  4. Apache Software Foundation (2017) Apache Kafka. Retrieved from Apache Kafka. A distributed streaming platform.: https://kafka.apache.org/

  5. Bagheri B, Yang S, Kao H-A, Lee J (2015) Cyber-physical systems architecture for self-aware machines in Industry 4.0 environment. IFAC-PapersOnLine:1622–1627. https://doi.org/10.1016/j.ifacol.2015.06.318

  6. Belman-Lopez C, Jiménez-García J, Hernández-González S (2020) Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0. RIAI Rev Iberoam Autom Inform Ind 17:432–447. https://doi.org/10.4995/riai.2020.12579

    Article  Google Scholar 

  7. Beysolow T II (2017) Introduction to Deep Learning Using R. Apress, San Francisco

    Book  Google Scholar 

  8. Caggiano A (2018) Cloud-based manufacturing process monitoring for smart diagnosis services. Int J Comput Integr Manuf 31(7):612–623. https://doi.org/10.1080/0951192X.2018.1425552

    Article  Google Scholar 

  9. Carnell J (2017) Spring Microservices in Action. Manning Publications Co., New York

    Google Scholar 

  10. Charro A, Schaefer D (2018) Cloud manufacturing as a new type of product-service system. Int J Comput Integr Manuf, pp 1018–1033. https://doi.org/10.1080/0951192X.2018.1493228

  11. Chen H (2017) Applications of cyber-physical system: a literature review. J Ind Integr Manag 02:1–28. https://doi.org/10.1142/S2424862217500129

    Article  Google Scholar 

  12. Chen H (2017) Theoretical foundations for cyber-physical systems: a literature review. J Ind Integr Manag 02:1–27. https://doi.org/10.1142/S2424862217500130

    Article  Google Scholar 

  13. Chen T, Tsai H-R (2016) Ubiquitous manufacturing: current practices, challenges, and opportunities. Robot Comput Integr Manuf 45:126–132. https://doi.org/10.1016/j.rcim.2016.01.001

    Article  Google Scholar 

  14. Chen X-W, Lin X (2014) Big Data deep learning: challenges and perspectives. IEEE Xplore (2)514–525. https://doi.org/10.1109/ACCESS.2014.2325029

  15. Chen Y (2017) Integrated and intelligent manufacturing: perspectives and enablers. Engineering 3:588–595. https://doi.org/10.1016/J.ENG.2017.04.009

    Article  Google Scholar 

  16. Chollet F (2015) Keras. Retrieved from Keras: https://keras.io

  17. Gorton I, Klein J (2015) Distribution, data, deployment, software architecture convergence in Big Data systems. IEEE Comput Soc 32(3):78–85. https://doi.org/10.1109/MS.2014.51

  18. Grieves M, Vickers J (2017) Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Springer:1–30. https://doi.org/10.1007/978-3-319-38756-7_4

  19. Grinberg M (2014) Flask web development. Developing web applications with Python. O’Reilly Media, Inc., Sebastopol

    Google Scholar 

  20. International Society of Automation (2021) ISA95, Enterprise-Control System Integration. Retrieved from International Society of Automation: https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95

  21. Jones D, Snider C, Nassehi A, Yon J, Hicks B (2020) Characterising the digital twin: a systematic literature review. CIRP J Manuf Sci Technol 29:36–52. https://doi.org/10.1016/j.cirpj.2020.02.002

    Article  Google Scholar 

  22. Kagermann H, Wahlster W, Helbig J (2013) Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. Natl Acad Sci Eng (acatech):1–82

  23. Kaggle (2021) Quality prediction in a mining process. Retrieved from Kaggle: https://www.kaggle.com/edumagalhaes/quality-prediction-in-a-mining-process

  24. Kingma D, Ba J (2015) Adam: a method for stochastic optimization. In: Proceedings of the 2015 International Conference on Learning Representations, San Diego. https://arxiv.org/abs/1412.6980

  25. Klingenberg C (2017) Industry 4.0: what makes it a revolution? EurOMA. 1–11. ResearchGate.

  26. Kusiak A (2017) Smart manufacturing. Int J Prod Res 56:508–517. https://doi.org/10.1080/00207543.2017.1351644

    Article  Google Scholar 

  27. Lee J, Ardakani H, Yang S, Bagheri B (2015) Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia CIRP 38:3–7

    Article  Google Scholar 

  28. Lee J, Bagheri B, Kao H-A (2014) A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Soc Manuf Eng (SME) 3:18–23. https://doi.org/10.1016/j.mfglet.2014.12.001

    Article  Google Scholar 

  29. Liu C, Vengayil H, Lu Y, Xu X (2019) A cyber-physical machine tools platform using OPC UA and MTConnect. J Manuf Syst 51:1–14. https://doi.org/10.1016/j.jmsy.2019.04.006

    Article  Google Scholar 

  30. Liu Y, Peng Y, Wang B, Yao S, Liu Z (2017) Review on cyber-physical systems. IEEE/CAA Journal of Automatica Sinica 4:27–40. https://doi.org/10.1109/JAS.2017.7510349

  31. Lu Y, Liu C, Wang K-K, Huang H, Xu X (2019) Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot Comput Integr Manuf 61:101837. https://doi.org/10.1016/j.rcim.2019.101837

    Article  Google Scholar 

  32. Moghaddam F, Ahmadi M, Eslami M (2015) Cloud computing challenges and opportunities: a survey. In: International Conference on Telematics and Future Generation Networks (TAFGEN). IEEE, Kuala Lumpur, pp 34–38. https://doi.org/10.1109/TAFGEN.2015.7289571

    Chapter  Google Scholar 

  33. Narkhede N, Shapira G, Palino T (2017) Kafka: the definitive guide. Real-Time Data and Stream Processing at Scale. O’Reilly Media, Inc., Sebastopol

    Google Scholar 

  34. OPC Foundation (2021) OPC Foundation. Retrieved from OPC Foundation: https://opcfoundation.org/

  35. Python Software Foundation (2020) Python. Retrieved from Python: https://www.python.org/

  36. Qi Q, Tao F, Hu T, Anwer N, Liu A, Wei Y, Wang L, Nee A (2019) Enabling technologies and tools for digital twin. J Manuf Syst 58:1–19. https://doi.org/10.1016/j.jmsy.2019.10.001

    Article  Google Scholar 

  37. RS, RS (2017) Data mining with Big Data. In: Intelligent Systems and Control (ISCO). IEEE, Coimbatore, pp 246–250. https://doi.org/10.1109/ISCO.2017.7855990

    Chapter  Google Scholar 

  38. Richards M (2015) Software Arquitecture Patterns. O’Reilly Media, Inc., Sebastopol

    Google Scholar 

  39. Rosen D (2019) Thoughts on design for intelligent manufacturing. Engineering 5:1–6. https://doi.org/10.1016/j.eng.2019.07.011

    Article  Google Scholar 

  40. Schleich B, Anwer N, Mathieu L, Wartzack S (2016) Shaping the digital twin for design and production engineering. CIRP Ann Manuf Technol 66:1–4. https://doi.org/10.1016/j.cirp.2017.04.040

    Article  Google Scholar 

  41. Shelden D (2018) Cyber-physical systems and the built environment. Technology|Architecture + Design 2:137–139. https://doi.org/10.1080/24751448.2018.1497358

    Article  Google Scholar 

  42. Stark R, Fresemann C, Lindow K (2019) Development and operation of digital twins for technical systems and services. CIRP Ann Manuf Technol 68:129–132. https://doi.org/10.1016/j.cirp.2019.04.024

    Article  Google Scholar 

  43. Tamas L, Murar M (2018) Smart CPS: vertical integration overview and user story with a cobotx. Int J Comput Integr Manuf 32:504–521. https://doi.org/10.1080/0951192X.2018.1535196

    Article  Google Scholar 

  44. Tao F, Qi Q, Wang L, Nee A (2019) Digital twins and cyber–physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering:653–661. https://doi.org/10.1016/j.eng.2019.01.014

  45. Tao F, Zhang M, Liu Y, Nee A (2018) Digital twin driven prognostics and health management for complex equipment. CIRP Ann Manuf Technol 67:1–4. https://doi.org/10.1016/j.cirp.2018.04.055

    Article  Google Scholar 

  46. The Apache Software Foundation (2020) Apache Avro. Retrieved from Apache Avro: https://avro.apache.org/

  47. Theorin A, Bengtsson K, Provost J, Lieder M, Johnsson C, Lundholm T, Lennartson B (2016) An event-driven manufacturing information system architecture for Industry 4.0. Int J Prod Res 55:1297–1311. https://doi.org/10.1080/00207543.2016.1201604

    Article  Google Scholar 

  48. Tian W, Zhao Y (2015) Optimized cloud resource management and scheduling. Morgan Kaufmann. https://doi.org/10.1016/C2013-0-13415-0

  49. Tuptuk N, Hailes S (2018) Security of smart manufacturing systems. J Manuf Syst 47:93–106. https://doi.org/10.1016/j.jmsy.2018.04.007

    Article  Google Scholar 

  50. Wang J, Ma Y, Zhang L, Gao R, Wu D (2018) Deep learning for smart manufacturing: Methods and applications. J Manuf Syst 48:1–13. https://doi.org/10.1016/j.jmsy.2018.01.003

    Article  Google Scholar 

  51. Wuest T, Weimer D, Irgens C, Thoben K-D (2016) Machine learning in manufacturing: advantages, challenges, and applications. Prod Manuf Res 4:23–45. https://doi.org/10.1080/21693277.2016.1192517

    Article  Google Scholar 

  52. Xu LD, Duan L (2018) Big data for cyber physical systems in industry 4.0: a survey. Enterp Inf​ Syst 13:148–169. https://doi.org/10.1080/17517575.2018.1442934

    Article  Google Scholar 

  53. Xu L, Xu E, Li L (2018) Industry 4.0: state of the art and future trends. Int J Prod Res 56:2941–2962. https://doi.org/10.1080/00207543.2018.1444806

    Article  Google Scholar 

  54. Yang H, Kumara S, Bukkapatnam S, Tsung F (2019) The Internet of Things for smart manufacturing: a review. IISE Transactions 51:1–36. https://doi.org/10.1080/24725854.2018.1555383

    Article  Google Scholar 

  55. Zhong R, Xu X, Wang L (2017) IoT-enabled smart factory visibility and traceability using laser-scanners. In: SME North American Manufacturing Research Conference. Procedia Manufacturing, pp 1–14

Download references

Funding

The author would like to thank the Mexican Council of Science and Technology (CONACYT – Consejo Nacional de Ciencia y Tecnología) for financing this research by awarding a scholarship for postgraduate studies (under CVU 773443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo Belman López.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, C.E.B. Real-time event-based platform for the development of digital twin applications. Int J Adv Manuf Technol 116, 835–845 (2021). https://doi.org/10.1007/s00170-021-07490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07490-9

Keywords

Navigation