Skip to main content

Advertisement

Log in

Simultaneous improvement in the hardness and friction characteristics of Ti-6Al-4V through laser cladding with nanoscale SiC particles in an air environment

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser cladding with SiC nanoparticles was performed on a Ti-6Al-4V substrate in an air environment. In this process, the oxide and reinforcement phases formed together in the coating layer and, consequently, the hardness and friction characteristics of the titanium surface were improved simultaneously. Specifically, the oxide phases such as SiO2 and TiO2 were formed on the top region of the coating layer through a reaction with oxygen. The reinforcement phases such as TiC and Ti5Si3, a eutectic structure, and martensite occurred in the lower region of the coating below the oxide phases. The reinforcement phases helped increase the hardness of the titanium surface by up to three times. Moreover, due to the influence of the oxide phases, the friction coefficient was reduced by up to 88% after the laser cladding. When the laser scanning speed decreased, the cooling rate decreased; therefore, the crystal size increased, and hardness value decreased. In addition, the friction coefficient decreased as the laser scanning speed decreased due to the increase in the TiO2 content and decrease in the agglomerated SiO2 at low laser scanning speeds. The amount of wear of the specimen reduced considerably after the laser cladding, and only light abrasive wear and fatigue wear were observed on the laser clad surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cao GH, Jian GY, Liu N, Zhang WH, Russell AM, Gerthsen D (2015) Microstructure and mechanical properties of an ultrafine Ti-Si-Nb alloy. Mater Chem Phys 163:512–517. https://doi.org/10.1016/j.matchemphys.2015.08.007

    Article  Google Scholar 

  2. Da Silva SLR, Kerber LO, Amaral L, Dos Santos CA (1999) X-ray diffraction measurements of plasma-nitrided Ti-6Al-4V. Surf Coat Technol 116–119:342–346. https://doi.org/10.1016/S0257-8972(99)00204-2

    Article  Google Scholar 

  3. Chen JL, Li J, Song R, Bai LL, Shao JZ, Qu CC (2015) Effect of the scanning speed on microstructural evolution and wear behaviors of laser cladding NiCrBSi composite coatings. Opt Laser Technol 72:86–99. https://doi.org/10.1016/j.optlastec.2015.03.015

    Article  Google Scholar 

  4. Liu XB, Meng XJ, Liu HQ, Shi GL, Wu SH, Sun CF, Wang MD, Qi LH (2014) Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti-6Al-4V alloy. Mater Des 55:404–409. https://doi.org/10.1016/j.matdes.2013.09.038

    Article  Google Scholar 

  5. Zhou F, Zhang H, Sun C, Dai J (2019) Microstructure and wear properties of multi ceramics reinforced metal-matrix composite coatings on Ti–6Al–4V alloy fabricated by laser surface alloying. Surf Eng 35:683–691. https://doi.org/10.1080/02670844.2019.1570611

    Article  Google Scholar 

  6. Nabhani M, Shoja Razavi R, Barekat M (2019) Corrosion study of laser cladded Ti-6Al-4V alloy in different corrosive environments. Eng Fail Anal 97:234–241. https://doi.org/10.1016/j.engfailanal.2019.01.023

    Article  Google Scholar 

  7. Tsui YC, Doyle C, Clyne TW (1998) Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels. Biomaterials 19:2015–2029. https://doi.org/10.1016/S0142-9612(98)00103-3

    Article  Google Scholar 

  8. Costa MYP, Venditti MLR, Cioffi MOH, Voorwald HJC, Guimarães VA, Ruas R (2011) Fatigue behavior of PVD coated Ti-6Al-4V alloy. Int J Fatigue 33:759–765. https://doi.org/10.1016/j.ijfatigue.2010.11.007

    Article  Google Scholar 

  9. Ikeyama M, Nakao S, Morikawa H, Yokogawa Y, Wielunski LS, Clissold RA, Bell T (2000) Increase of surface hardness induced by O, Ca or P ion implantation into titanium. Surf Coat Technol 128–129:400–403. https://doi.org/10.1016/S0257-8972(00)00617-4

    Article  Google Scholar 

  10. Zhecheva A, Malinov S, Sha W (2006) Titanium alloys after surface gas nitriding. Surf Coat Technol 201:2467–2474. https://doi.org/10.1016/j.surfcoat.2006.04.019

    Article  Google Scholar 

  11. Atar E, Kayali ES, Cimenoglu H (2008) Characteristics and wear performance of borided Ti6Al4V alloy. Surf Coat Technol 202:4583–4590. https://doi.org/10.1016/j.surfcoat.2008.03.011

    Article  Google Scholar 

  12. Saleh AF, Abboud JH, Benyounis KY (2010) Surface carburizing of Ti-6Al-4V alloy by laser melting. Opt Lasers Eng 48:257–267. https://doi.org/10.1016/j.optlaseng.2009.11.001

    Article  Google Scholar 

  13. Chen T, Wu W, Li W, Liu D (2019) Laser cladding of nanoparticle TiC ceramic powder: effects of process parameters on the quality characteristics of the coatings and its prediction model. Opt Laser Technol 116:345–355. https://doi.org/10.1016/j.optlastec.2019.03.048

    Article  Google Scholar 

  14. Molian PA, Hualun L (1989) Laser cladding of Ti-6Al-4V with bn for improved wear performance. Wear 130:337–352. https://doi.org/10.1016/0043-1648(89)90187-7

    Article  Google Scholar 

  15. Arias-González F, Del Val J, Comesaña R et al (2016) Fiber laser cladding of nickel-based alloy on cast iron. Appl Surf Sci 374:197–205. https://doi.org/10.1016/j.apsusc.2015.11.023

    Article  Google Scholar 

  16. Choi DC, Kim HS (2020) Performance evaluation of laser shock micro-patterning process on aluminum surface with various process parameters and loading schemes. Opt Lasers Eng 124:105799. https://doi.org/10.1016/j.optlaseng.2019.105799

    Article  Google Scholar 

  17. Koo SJ, Kim HS (2020) The homogeneity of multi-textured micro-pattern arrays in a laser shock surface patterning process and its effect on the surface properties of aluminum alloy. Surf Coat Technol 382:382. https://doi.org/10.1016/j.surfcoat.2019.125149

    Article  Google Scholar 

  18. Torims T (2013) The application of laser cladding to mechanical component repair, renovation and regeneration. In: Katalinic B, Tekic Z (eds) DAAAM International Scientific Book 2013. DAAAM International, Vienna, pp 587–608. https://doi.org/10.2507/daaam.scibook.2013.32

    Chapter  Google Scholar 

  19. Ganjali M, Ganjali M, Sadrnezhaad SK, Pakzad Y (2021) Laser cladding of Ti alloys for biomedical applications. In: Cavaliere P (ed) Laser Cladding of Metals. Springer, Cham. https://doi.org/10.1007/978-3-030-53195-9_10

    Chapter  Google Scholar 

  20. Richter KH, Orban S, Nowotny S (2004) Laser cladding of the titanium alloy Ti6242 to restore damaged blades. In: Proceedings of the 23rd international congress on applications of lasers and electro-optics. https://doi.org/10.2351/1.5060222

    Chapter  Google Scholar 

  21. Adebiyi DI, Popoola API, Botef I (2016) Low pressure cold spray coating of Ti-6Al-4V with SiC-based cermet. Mater Lett 175:63–67. https://doi.org/10.1016/j.matlet.2016.03.142

    Article  Google Scholar 

  22. Das M, Bysakh S, Basu D, Sampath Kumar TS, Balla VK, Bose S, Bandyopadhyay A (2011) Microstructure, mechanical and wear properties of laser processed SiC particle reinforced coatings on titanium. Surf Coat Technol 205:4366–4373. https://doi.org/10.1016/j.surfcoat.2011.03.027

    Article  Google Scholar 

  23. Das M, Balla VK, Basu D, Bose S, Bandyopadhyay A (2010) Laser processing of SiC-particle-reinforced coating on titanium. Scr Mater 63:438–441. https://doi.org/10.1016/j.scriptamat.2010.04.044

    Article  Google Scholar 

  24. Oh JC, Yun E, Golkovski MG, Lee S (2003) Improvement of hardness and wear resistance in SiC/Ti-6Al-4V surface composites fabricated by high-energy electron beam irradiation. Mater Sci Eng A 351:98–108. https://doi.org/10.1016/S0921-5093(02)00821-3

    Article  Google Scholar 

  25. Pei YT, Ocelik V, De Hosson JTM (2002) SiCp/Ti6Al4V functionally graded materials produced by laser melt injection. Acta Mater 50:2035–2051. https://doi.org/10.1016/S1359-6454(02)00049-6

    Article  Google Scholar 

  26. Lin YC, Lin YC (2011) Microstructure and tribological performance of Ti-6Al-4V cladding with SiC powder. Surf Coat Technol 205:5400–5405. https://doi.org/10.1016/j.surfcoat.2011.06.001

    Article  Google Scholar 

  27. Xu G, Shen X (2019) Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance. Surf Coat Technol 364:180–186. https://doi.org/10.1016/j.surfcoat.2019.01.069

    Article  Google Scholar 

  28. Mu M, Zhou X, Xiao Q, Liang J, Huo X (2012) Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy. Appl Surf Sci 258:8570–8576. https://doi.org/10.1016/j.apsusc.2012.05.051

    Article  Google Scholar 

  29. Arrizubieta JI, Lamikiz A, Klocke F, Martínez S, Arntz K, Ukar E (2017) Evaluation of the relevance of melt pool dynamics in laser material deposition process modeling. Int J Heat Mass Transf 115:80–91. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.011

    Article  Google Scholar 

  30. Jiang Y, Cheng Y, Zhang X, Yang J, Yang X, Cheng Z (2020) Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process. Optik (Stuttg) 203:164044. https://doi.org/10.1016/j.ijleo.2019.164044

    Article  Google Scholar 

  31. Selamat MS, Watson LM, Baker TN (2003) XRD and XPS studies on surface MMC layer of SiC reinforced Ti-6Al-4V alloy. J Mater Process Technol 142:725–737. https://doi.org/10.1016/S0924-0136(03)00814-8

    Article  Google Scholar 

  32. Baker TN, Selamat MS (2008) Surface engineering of Ti-6Al-4V by nitriding and powder alloying using CW CO2 laser. Mater Sci Technol 24:189–200. https://doi.org/10.1179/174328407X226563

    Article  Google Scholar 

  33. Aniołek K, Kupka M, Barylski A, Mieszczak (2016) Characteristic of oxide layers obtained on titanium in the process of thermal oxidation. Arch Metall Mater 61:853–856. https://doi.org/10.1515/amm-2016-0144

    Article  Google Scholar 

  34. Li H, Vlassak JJ (2009) Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation. J Mater Res 24:1114–1126. https://doi.org/10.1557/jmr.2009.0144

    Article  Google Scholar 

  35. Padmanaban S, Subramanian R, Anburaj J, Thillairajan K (2020) Rheo-die-casting of Al-Si-Mg alloy and Al-Si-Mg/ SiCp composites: microstructure and wear behavior. Mater Res 23. https://doi.org/10.1590/1980-5373-MR-2020-0063

  36. Moharrami A, Razaghian A, Paidar M, Šlapáková M, Ojo OO, Taghiabadi R (2020) Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing. Mater Chem Phys 250:123066. https://doi.org/10.1016/j.matchemphys.2020.123066

    Article  Google Scholar 

  37. Moharrami A, Razaghian A, Emamy M, Taghiabadi R (2019) Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20 wt% Mg2Si composite. J Tribol 141. https://doi.org/10.1115/1.4044672

  38. Moharami A (2020) High-temperature tribological properties of friction stir processed Al-30Mg 2 Si composite. Mater High Temp 37:351–356. https://doi.org/10.1080/09603409.2020.1785792

    Article  Google Scholar 

  39. Moharami A (2020) Improving the dry sliding-wear resistance of as-cast Cu-10Sn-1P alloy through accumulative back extrusion (ABE) process. J Mater Res Technol 9:10091–10096. https://doi.org/10.1016/j.jmrt.2020.07.022

    Article  Google Scholar 

  40. Gao NF, Miyamoto Y, Zhang D (1999) Dense Ti3SiC2 prepared by reactive HIP. J Mater Sci 34:4385–4392. https://doi.org/10.1023/A:1004664500254

    Article  Google Scholar 

  41. Çomakli O, Yetim T, Çelik A (2014) The effect of calcination temperatures on wear properties of TiO2 coated CP-Ti. Surf Coat Technol 246:34–39. https://doi.org/10.1016/j.surfcoat.2014.02.059

    Article  Google Scholar 

  42. Bieniaś J, Surowska B, Stoch A, Matraszek H, Walczak M (2009) The influence of SiO2 and SiO2-TiO2 intermediate coatings on bond strength of titanium and Ti6Al4V alloy to dental porcelain. Dent Mater 25:1128–1135. https://doi.org/10.1016/j.dental.2009.01.107

    Article  Google Scholar 

  43. Ramírez-García RE, González-Rodríguez JA, Arroyo-Ortega M, Pérez-García SA, Licea-Jiménez L (2017) Engineered TiO2 and SiO2-TiO2 films on silica-coated glass for increased thin film durability under abrasive conditions. Int J Appl Ceram Technol 14:39–49. https://doi.org/10.1111/ijac.12614

    Article  Google Scholar 

  44. Jia Q, Zhang Y, Wu Z, Zhang P (2007) Tribological properties of anatase TiO 2 sol-gel films controlled by mutually soluble dopants. Tribol Lett 26:19–24. https://doi.org/10.1007/s11249-006-9177-6

    Article  Google Scholar 

Download references

Data availability

Not applicable.

Code availability

Not applicable..

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1A2C1006740).

Author information

Authors and Affiliations

Authors

Contributions

Tao Jiang performed the experiments, analyzed the data, and drafted the manuscript. Hong Seok Kim analyzed the data, edited the manuscript, and supervised this study.

Corresponding author

Correspondence to Hong Seok Kim.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Kim, H.S. Simultaneous improvement in the hardness and friction characteristics of Ti-6Al-4V through laser cladding with nanoscale SiC particles in an air environment. Int J Adv Manuf Technol 116, 1041–1051 (2021). https://doi.org/10.1007/s00170-021-07486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07486-5

Keywords

Navigation