Skip to main content
Log in

Analysis of stress-strain in the partial heating roll forming process of high strength square hollow steel sections

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The demand for roll-formed high strength steel square hollow sections has extensively increased by automotive and construction industries due to their excellent structural performances and attractive appearances. However, due to their low ductility and demand for large forming tool loads, high-strength steels are challenging to be roll-formed at room temperature. Partial heating roll forming is a recently proposed manufacturing technique aiming to overcome these difficulties by applying temperature on bend areas. In this study, the finite element software LS-DYNA was utilized to predict effective plastic strain and stress developments and associated residual stresses induced during the partial heating roll forming method. Furthermore, comparisons were made between cold roll forming and partial heating roll forming methods. The results indicate that the effective stress value during the partial heating roll forming method was lower than the cold forming method. In addition, the product manufactured by the partial heating roll forming method had smaller and uniform residual stress distributions along the section perimeter and across the section thickness than the cold-formed counterpart. Further investigations on corner geometry showed that high strength steel square hollow sections with a minimum bend radius could be successfully manufactured using the partial heating roll forming method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Halmos GT (2006) Roll forming handbook. CRC, New York

    Google Scholar 

  2. Sweeney K, Grunewald U (2003) The application of roll forming for automotive structural parts. J Mater Process Technol 132:9–15. https://doi.org/10.1016/S0924-0136(02)00193-0

    Article  Google Scholar 

  3. Kuchta K, Tylek I (2018) Rational application of hot finished rectangular hollow sections in steel structures. In: MATEC Web of Conferences, pp 1–8

    Google Scholar 

  4. Safdarian R, Moslemi Naeini H (2015) The effects of forming parameters on the cold roll forming of channel section. Thin-Walled Struct 92:130–136. https://doi.org/10.1016/j.tws.2015.03.002

    Article  Google Scholar 

  5. Shirani Bidabadi B, Moslemi Naeini H, Salmani Tehrani M, Barghikar H (2016) Experimental and numerical study of bowing defects in cold roll-formed, U-channel sections. J Constr Steel Res 118:243–253. https://doi.org/10.1016/j.jcsr.2015.11.007

    Article  Google Scholar 

  6. Mohammdi Najafabadi H, Moslemi Naeini H, Safdarian R, Kasaei MM, Akbari D, Abbaszadeh B (2019) Effect of forming parameters on edge wrinkling in cold roll forming of wide profiles. Int J Adv Manuf Technol 101:181–194. https://doi.org/10.1007/s00170-018-2885-x

    Article  Google Scholar 

  7. Tajik Y, Moslemi Naeini H, Azizi Tafti R, Shirani Bidabadi B (2018) A strategy to reduce the twist defect in roll-formed asymmetrical-channel sections. Thin-Walled Struct 130:395–404. https://doi.org/10.1016/j.tws.2018.05.013

    Article  Google Scholar 

  8. Paralikas J, Salonitis K, Chryssolouris G (2011) Investigation of the effect of roll forming pass design on main redundant deformations on profiles from AHSS. Int J Adv Manuf Technol 56:475–491. https://doi.org/10.1007/s00170-011-3208-7

    Article  Google Scholar 

  9. Wang H, Yan Y, Jia F, Han F (2016) Investigations of fracture on DP980 steel sheet in roll forming process. J Manuf Process 22:177–184. https://doi.org/10.1016/j.jmapro.2016.03.008

    Article  Google Scholar 

  10. Yao D, Cai L, Bao C (2016) A new fracture criterion for ductile materials based on a finite element aided testing method. Mater Sci Eng A 673:633–647. https://doi.org/10.1016/j.msea.2016.06.076

    Article  Google Scholar 

  11. Hu Q, Zhang F, Li X, Chen J (2018) Overview on the Prediction models for sheet metal forming failure: necking and ductile fracture. Acta Mech Solida Sin 31:259–289. https://doi.org/10.1007/s10338-018-0026-6

    Article  Google Scholar 

  12. Uthaisangsuk V, Prahl U, Münstermann S, Bleck W (2008) Experimental and numerical failure criterion for formability prediction in sheet metal forming. Comput Mater Sci 43:43–50. https://doi.org/10.1016/j.commatsci.2007.07.036

    Article  Google Scholar 

  13. Heinilä S, Marquis GB, Björk T (2008) Observations on fatigue crack paths in the corners of cold-formed high-strength steel tubes. Eng Fract Mech 75:833–844. https://doi.org/10.1016/j.engfracmech.2007.01.010

    Article  Google Scholar 

  14. Puthli R, Packer JA (2013) Structural design using cold-formed hollow sections. Steel Constr 6:150–157. https://doi.org/10.1002/stco.201310013

    Article  Google Scholar 

  15. Basaeri A, Khorsand H, Eslami-Farsani R, Hasanniya MH (2020) Comparative experimental and numerical study on the mechanical properties, formability, and microstructure of two high strength steel sheets. Int J Adv Manuf Technol 108:2023–2033. https://doi.org/10.1007/s00170-020-05399-3

    Article  Google Scholar 

  16. Jiao-Jiao C, Jian-Guo C, Qiu-Fang Z, Jiang LN, Yu Rong-guo Z (2020) A novel approach to springback control of high-strength steel in cold roll forming. Int J Adv Manuf Technol 107:1793–1804. https://doi.org/10.1007/s00170-020-05154-8

    Article  Google Scholar 

  17. Simpson N, Van Rooyen GT (2003) Corner cracking associated with the production of square tubing from low carbon ferritic stainless steel. J South Afr Inst Min Metall 103:641–644

    Google Scholar 

  18. Han F, Wang Y, Wang ZL (2018) Mechanical bending property of ultra-high strength steel sheets in roll forming process. Int J Precis Eng Manuf 19:1885–1893. https://doi.org/10.1007/s12541-018-0216-7

    Article  Google Scholar 

  19. Brnic J, Canadija M, Turkalj G, Lanc D, Pepelnjak T, Barisic B, Vukelic G, Brcic M (2009) Tool material behavior at elevated temperatures. Mater Manuf Process 24:758–762. https://doi.org/10.1080/10426910902809800

    Article  Google Scholar 

  20. Pandre S, Morchhale A, Kotkunde N, Singh SK (2020) Influence of processing temperature on formability of thin-rolled DP590 steel sheet. Mater Manuf Process 35:901–909. https://doi.org/10.1080/10426914.2020.1743854

    Article  Google Scholar 

  21. Ozturk F, Ece RE, Polat N, Koksal A (2010) Effect of warm temperature on springback compensation of titanium sheet. Mater Manuf Process 25:1021–1024. https://doi.org/10.1080/10426914.2010.492056

    Article  Google Scholar 

  22. Cruise RB, Gardner L (2008) Residual stress analysis of structural stainless steel sections. J Constr Steel Res 64:352–366. https://doi.org/10.1016/j.jcsr.2007.08.001

    Article  Google Scholar 

  23. Zhang XZ, Liu S, Zhao MS, Chiew SP (2016) Comparative experimental study of hot-formed, hot-finished and cold-formed rectangular hollow sections. Case Stud Struct Eng 6:115–129. https://doi.org/10.1016/j.csse.2016.09.001

    Article  Google Scholar 

  24. Sun M, Packer JA (2014) Direct-formed and continuous-formed rectangular hollow sections — comparison of static properties. J Constr Steel Res 92:67–78. https://doi.org/10.1016/j.jcsr.2013.09.013

    Article  Google Scholar 

  25. Li GW, Li YQ (2019) Overall stability behavior of annealed cold-formed thick-walled SHS and RHS steel tubes. J Constr Steel Res 157:260–270. https://doi.org/10.1016/j.jcsr.2019.02.033

    Article  Google Scholar 

  26. Sun M, Packer JA (2019) Hot-dip galvanizing of cold-formed steel hollow sections: a state-of-the-art review. Front Struct Civ Eng 13:49–65. https://doi.org/10.1007/s11709-017-0448-0

    Article  Google Scholar 

  27. Tayyebi K, Sun M, Karimi K (2020) Residual stresses of heat-treated and hot-dip galvanized RHS cold-formed by different methods. J Constr Steel Res 169:106071. https://doi.org/10.1016/j.jcsr.2020.106071

    Article  Google Scholar 

  28. McClintock FA (1968) A criterion for ductile fracture by the growth of holes. ASME J Appl Mech 35:363–371

    Article  Google Scholar 

  29. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields*. J Mech Phys Solids 17:201–217. https://doi.org/10.1016/0022-5096(69)90033-7

    Article  Google Scholar 

  30. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  31. Needleman A, Tvergaard V (1984) An analysis of ductile rupture in notched bars. J Mech Phys Solids 32:461–490. https://doi.org/10.1016/0022-5096(84)90031-0

    Article  Google Scholar 

  32. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  33. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98. https://doi.org/10.1016/j.ijmecsci.2004.02.006

    Article  Google Scholar 

  34. Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Met Inst Met 96:33–39

    Google Scholar 

  35. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407. https://doi.org/10.1007/BF00036191

    Article  Google Scholar 

  36. Tvergaard V (1982) Ductile fracture by cavity nucleation between larger voids. J Mech Phys Solids 30:265–286. https://doi.org/10.1016/0022-5096(82)90033-3

    Article  MATH  Google Scholar 

  37. Oyane M, Sato T, Okimoto SS K (1980) Criteria for ductile fracture and their applications. J Mech Work Technol 4:65–81

    Article  Google Scholar 

  38. Bai Y, Wierzbicki T (2010) Application of extended Mohr-Coulomb criterion to ductile fracture. Int J Fract 161:1–20. https://doi.org/10.1007/s10704-009-9422-8

    Article  MATH  Google Scholar 

  39. Zhang XW, Wen JF, Zhang XC, Wang XG, Tu ST (2019) Effects of the stress state on plastic deformation and ductile failure: experiment and numerical simulation using a newly designed tension-shear specimen. Fatigue Fract Eng Mater Struct 42:2079–2092. https://doi.org/10.1111/ffe.13084

    Article  Google Scholar 

  40. Kim M, Lee H, Hong S (2019) Experimental determination of the failure surface for DP980 high-strength metal sheets considering stress triaxiality and Lode angle. Int J Adv Manuf Technol 100:2775–2784. https://doi.org/10.1007/s00170-018-2867-z

    Article  Google Scholar 

  41. Talebi-Ghadikolaee H, Naeini HM, Mirnia MJ, Mirzai MA, Alexandrov S, Zeinali MS (2020) Modeling of ductile damage evolution in roll forming of U-channel sections. J Mater Process Technol 283:116690. https://doi.org/10.1016/j.jmatprotec.2020.116690

    Article  Google Scholar 

  42. Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 75:3343–3366. https://doi.org/10.1016/j.engfracmech.2007.07.022

    Article  Google Scholar 

  43. Deole AD, Barnett MR, Weiss M (2018) The numerical prediction of ductile fracture of martensitic steel in roll forming. Int J Solids Struct 144–145:20–31. https://doi.org/10.1016/j.ijsolstr.2018.04.011

    Article  Google Scholar 

  44. Mirnia MJ, Shamsari M (2017) Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. J Mater Process Technol 244:17–43. https://doi.org/10.1016/j.jmatprotec.2017.01.029

    Article  Google Scholar 

  45. Cruise RB, Gardner L (2008) Strength enhancements induced during cold forming of stainless steel sections. J Constr Steel Res 64:1310–1316. https://doi.org/10.1016/j.jcsr.2008.04.014

    Article  Google Scholar 

  46. Li SH, Zeng G, Ma YF, Guo YJ, Lai XM (2009) Residual stresses in roll-formed square hollow sections. Thin-Walled Struct 47:505–513. https://doi.org/10.1016/j.tws.2008.10.015

    Article  Google Scholar 

  47. Chen MT, Young B (2019) Material properties and structural behavior of cold-formed steel elliptical hollow section stub columns. Thin-Walled Struct 134:111–126. https://doi.org/10.1016/j.tws.2018.07.055

    Article  Google Scholar 

  48. Key PW, Hancock GJ (1993) A theoretical investigation of the column behaviour of cold-formed square hollow sections. Thin-Walled Struct 16:31–64. https://doi.org/10.1016/0263-8231(93)90040-H

    Article  Google Scholar 

  49. Peng XF, Han JT, Yan PJ, Wang Y (2016) Effect of hot forming temperature on the microstructure and mechanical properties of high strength square tubes. Gongcheng Kexue Xuebao/Chin J Eng 38:820–826. https://doi.org/10.13374/j.issn2095-9389.2016.06.011

    Article  Google Scholar 

  50. Hallquist JO (2006) LS-Dyna Theory manual. Soft- ware Technology Corp, Livermore

    Google Scholar 

  51. Badr OM, Rolfe B, Weiss M (2018) Effect of the forming method on part shape quality in cold roll forming high strength Ti-6Al-4V sheet. J Manuf Process 32:513–521. https://doi.org/10.1016/j.jmapro.2018.03.022

    Article  Google Scholar 

  52. Patel SK, Lal RK, Dwivedi JP, Singh VP (2013) Springback analysis in sheet metal forming using modified ludwik stress-strain relation. ISRN Mech Eng 2013:1–11. https://doi.org/10.1155/2013/640958

    Article  Google Scholar 

  53. Kadkhodayan M, Zafarparandeh I (2008) On the relation of equivalent plastic strain and springback in sheet draw bending, pp 141–144. https://doi.org/10.1007/s12289-008-0

    Book  Google Scholar 

  54. Alexandrov S, Mustafa Y, Yahya MY (2013) An efficient approach for identifying constitutive parameters of the modified oyane ductile fracture criterion at high temperature. Math Probl Eng 2013:1–4. https://doi.org/10.1155/2013/514945

    Article  MathSciNet  MATH  Google Scholar 

  55. Shi D, Hu P, Ying L (2016) Comparative study of ductile fracture prediction of 22MnB5 steel in hot stamping process. Int J Adv Manuf Technol 84:895–906. https://doi.org/10.1007/s00170-015-7754-2

    Article  Google Scholar 

  56. He JL, Xiao YH, Liu J, Cui ZS, Ruan LQ (2014) Model for predicting ductile fracture of SA508- 3 steel undergoing hot forming. Mater Sci Technol (United Kingdom) 30:1239–1247. https://doi.org/10.1179/1743284713Y.0000000443

    Article  Google Scholar 

  57. Li GW, Li YQ, Xu J, Cao X (2019) Experimental investigation on the longitudinal residual stress of cold-formed thick-walled SHS and RHS steel tubes. Thin-Walled Struct 138:473–484. https://doi.org/10.1016/j.tws.2018.09.036

    Article  Google Scholar 

  58. Ma JL, Chan TM, Young B (2015) Material properties and residual stresses of cold-formed high strength steel hollow sections. J Constr Steel Res 109:152–165. https://doi.org/10.1016/j.jcsr.2015.02.006

    Article  Google Scholar 

  59. Yao Y, Quach WM, Young B (2019) Finite element-based method for residual stresses and plastic strains in cold-formed steel hollow sections. Eng Struct 188:24–42. https://doi.org/10.1016/j.engstruct.2019.03.010

    Article  Google Scholar 

  60. Heinilä S, Björk T, Marquis G (2008) The influence of residual stresses on the fatigue strength of cold-formed structural tubes. J ASTM Int 5:1–11. https://doi.org/10.1520/JAI101570

    Article  Google Scholar 

  61. Wang A, Zhong K, El Fakir O, Liu J, Sun C, Wang L, Lin J, Dean T (2017) Springback analysis of AA5754 after hot stamping: experiments and FE modelling. Int J Adv Manuf Technol 89:1339–1352. https://doi.org/10.1007/s00170-016-9166-3

    Article  Google Scholar 

  62. Saito N, Fukahori M, Hisano D, Hamasaki H, Yoshida F (2017) Effects of temperature, forming speed and stress relaxation on springback in warm forming of high strength steel sheet. Procedia Eng 207:2394–2398. https://doi.org/10.1016/j.proeng.2017.10.1014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived and directed the project. Z.A. made the simulations. X.P verified the numerical results of the study with the previous experimental study. Z.A. and Y.W. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jingtao Han.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehari, Z.A., Han, J., Peng, X. et al. Analysis of stress-strain in the partial heating roll forming process of high strength square hollow steel sections. Int J Adv Manuf Technol 115, 563–579 (2021). https://doi.org/10.1007/s00170-021-07126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07126-y

Keywords

Navigation