Skip to main content
Log in

Tolerance analysis of the volumetric error of heavy-duty machine tool based on interval uncertainty

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Tolerance design is one of the main stages in the robust design process of machine tool. For heavy-duty machine tools, traditional tolerance analyses based on probabilistic methods may not be suitable because it is generally difficult and costly to obtain the accurate probability distribution of error by the limited geometric error measurements in large dimension. In this paper, a new tolerance analysis method for heavy-duty machine tools is proposed based on the interval uncertainty. Considering independent geometric error components have certain bounds but accurate distributions are unknown, the interval theory is introduced to the kinematic modeling of the static volumetric error of heavy-duty machine tools based on the multi body system (MBS) and homogeneous transformation matrix (HTM). Geometric error components are described in forms of interval numbers to extend the error model to the interval number system. The interval extension of the volumetric error function is further modified so that the variation interval of the volumetric error is thus accurately evaluated by the interval arithmetic. Comparative studies on tolerance analyses of different typical probabilistic/non-probabilistic methods are conducted through numerical simulations. It is found that under the given computational condition, the tolerance analysis based on the interval uncertainty can accurately evaluate the variation range of the volumetric error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

All code of this study is available in the supplementary information files. If not, it is also available from the corresponding author on reasonable request.

References

  1. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools - a review: Part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256. https://doi.org/10.1016/S0890-6955(00)00009-2

    Article  Google Scholar 

  2. Kiridena V, Ferreira PM (1993) Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools. Int J Mach Tools Manuf 33(3):417–437. https://doi.org/10.1016/0890-6955(93)90049-Z

    Article  Google Scholar 

  3. Srivastava KA, Veldhuis CS, Elbestawit AM (1995) Modelling geometric and thermal errors in a five-axis CNC machine tool. Int J Mach Tools Manuf 35(9):1321–1337. https://doi.org/10.1016/0890-6955(94)00048-O

    Article  Google Scholar 

  4. Zhang H, Yang J, Zhang Y, Shen J, Wang C (2011) Measurement and compensation for volumetric positioning errors of CNC machine tools considering thermal effect. Int J Adv Manuf Technol 55(1):275–283. https://doi.org/10.1007/s00170-010-3024-5

    Article  Google Scholar 

  5. Wu C, Fan J, Wang Q, Chen D (2018) Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion. Int J Mach Tools Manuf 124:80–98. https://doi.org/10.1016/j.ijmachtools.2017.07.008

    Article  Google Scholar 

  6. Zhu S, Ding G, Qin S, Lei J, Zhuang L, Yan K (2012) Integrated geometric error modeling, identification and compensation of CNC machine tools. Int J Mach Tools Manuf 52(1):24–29. https://doi.org/10.1016/j.ijmachtools.2011.08.011

    Article  Google Scholar 

  7. Li Z, Yang J, Fan K, Zhang Y (2015) Integrated geometric and thermal error modeling and compensation for vertical machining centers. Int J Adv Manuf Technol 76(5):1139–1150. https://doi.org/10.1007/s00170-014-6336-z

    Article  Google Scholar 

  8. Li Y, Zhao J, Ji SJ, Wang X (2016) A new error compensation method for a four-axis horizontal machine tool. Key Eng Mater 679:1–5. https://doi.org/10.4028/www.scientific.net/KEM.679.1

    Article  Google Scholar 

  9. Chu N, Zhang WM (2018) Error compensation model of CNC machine-tool based on tensor theory. Trans Chin Soc Agric Machin 48(10):408–416. https://doi.org/10.6041/j.issn.1000-1298.2017.10.052

    Article  Google Scholar 

  10. Yang B, Zhang G, Ran Y, Yu H (2019) Kinematic modeling and machining precision analysis of multi-axis CNC machine tools based on screw theory. Mech Mach Theory 140:538–552. https://doi.org/10.1016/j.mechmachtheory.2019.06.021

    Article  Google Scholar 

  11. Cheng Q, Feng Q, Liu Z, Gu P, Zhang G (2016) Sensitivity analysis of machining accuracy of multi-axis machine tool based on POE screw theory and Morris method. Int J Adv Manuf Technol 84:2301–2318. https://doi.org/10.1007/s00170-015-7791-x

    Article  Google Scholar 

  12. Fu G, Gong H, Fu J, Gao H, Deng X (2019) Geometric error contribution modeling and sensitivity evaluating for each axis of five-axis machine tools based on POE theory and transforming differential changes between coordinate frames. Int J Mach Tools Manuf 147:103455. https://doi.org/10.1016/j.ijmachtools.2019.103455

    Article  Google Scholar 

  13. Lin PD, Ehmann KF (1996) Inverse error analysis for multi-axis machines. J Manuf Sci E-T ASME 118(1):88–94. https://doi.org/10.1115/1.2803651

    Article  Google Scholar 

  14. Erkorkmaz K, Gorniak JM, Gordon DJ (2010) Precision machine tool X-Y stage utilizing a planar air bearing arrangement. CIRP Ann-Manuf Tech 59(1):425–428. https://doi.org/10.1016/j.cirp.2010.03.086

    Article  Google Scholar 

  15. Wu F, Dantan JY, Etenne A, Siadat A, Martin P (2009) Improvement algorithm for tolerance allocation based on Monte Carlo simulation and discrete optimization. Comput Ind Eng 56(4):1402–1413. https://doi.org/10.1016/j.cie.2008.09.005

    Article  Google Scholar 

  16. Cheng Q, Feng Q, Liu Z, Gu P, Cai L (2015) Fluctuation prediction of machining accuracy for multi-axis machine tool based on stochastic process theory. P I Mech Eng C-J Mec 229(14):2534–2550. https://doi.org/10.1177/0954406214562633

    Article  Google Scholar 

  17. Cheng Q, Zhao H, Zhao Y, Sun B, Gu P (2015) Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation. J Intell Manuf 29:191–209. https://doi.org/10.1007/s10845-015-1101-1

    Article  Google Scholar 

  18. Zhang Z, Liu Z, Cai L, Chen Q, Yin Q (2016) An accuracy design approach for a multi-axis NC machine tool based on reliability theory. Int J Adv Manuf Technol 91(5-8):1–20. https://doi.org/10.1007/s00170-016-9824-5

    Article  Google Scholar 

  19. Zhang Z, Cai L, Cheng Q, Liu Z, Gu P (2019) A geometric error budget method to improve machining accuracy reliability of multi-axis machine tools. Int J Adv Manuf Technol 30(9):495–519. https://doi.org/10.1007/s10845-016-1260-8

    Article  Google Scholar 

  20. Wu JL, Luo Z, Zhang N, Zhang Y (2015) A new uncertain optimization method for structures using Chebyshev surrogate models. Comput Struct 146:185–196. https://doi.org/10.1016/j.compstruc.2014.09.006

    Article  Google Scholar 

  21. Xu B, Jin YJ (2014) Multiobjective dynamic topology optimization of truss with interval parameters based on interval possibility degree. J Vib Control 20(1):66–81. https://doi.org/10.1177/1077546312456725

    Article  MathSciNet  MATH  Google Scholar 

  22. Khodaygan S, Movahhedy MR, Saadat Fomani MS (2010) Tolerance analysis of mechanical assemblies based on modal interval and small degrees of freedom (MI-SDOF) concept. Int J Adv Manuf Technol 50:1041–1061. https://doi.org/10.1007/s00170-010-2568-8

    Article  Google Scholar 

  23. Jiang C, Han X, Li D (2012) A new interval comparison relation and application in interval number programming for uncertain problems. CMC-Comput Mater Con 27(3):275–303

    Google Scholar 

  24. Jiang C, Xie HC, Zhang ZG, Han X (2015) A new interval optimization method considering tolerance design. Eng Optim 47(12):1637–1650. https://doi.org/10.1080/0305215X.2014.982632

    Article  MathSciNet  Google Scholar 

  25. Wang H, Shao Z, Fan Z, Han Z (2019) Configuration optimization of laser tracker stations for position measurement in error identification of heavy-duty machine tools. Meas Sci Technol 30(4):045009. https://doi.org/10.1088/1361-6501/ab048b

    Article  Google Scholar 

  26. Ni BY, Jiang C, Han X (2016) An improved multidimensional parallelepiped non-probabilistic model for structural uncertainty analysis. Appl Math Model 40(7-8):4727–4745. https://doi.org/10.1016/j.apm.2015.11.047

    Article  MathSciNet  MATH  Google Scholar 

  27. Moore RE (1979) Methods and application of interval analysis. SIAM, Philadelphia ISBN: 978-0-89871-161-5

    Book  Google Scholar 

  28. Rao SS, Berke L (1997) Analysis of uncertain structural systems using interval analysis. AIAA J 35(4):725–735. https://doi.org/10.2514/2.164

    Article  MATH  Google Scholar 

  29. Qiu ZP, Wang XJ (2005) Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. Int J Solids Struct 42:4958–4970. https://doi.org/10.1016/j.ijsolstr.2005.02.023

    Article  MATH  Google Scholar 

  30. Zhou YT, Jiang C, Han X (2006) Interval and subinterval analysis methods of the structural analysis and their error estimations. Int J Comp Meth 3(2):229–244. https://doi.org/10.1142/S0219876206000771

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang C, Fu CM, Ni BY, Han X (2016) Interval arithmetic operations for uncertainty analysis with correlated interval variables. Acta Mech Sinica 32(4):743–752. https://doi.org/10.1007/s10409-015-0525-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by National Natural Science Foundation of China (Grant No.51405300).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Han Wang contributed significantly to analysis and manuscript preparation. Dr. Tian-jian Li helped perform the analysis with constructive discussions. Dr. Xiao-hong Ding contributed to the conception of the study and helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Xiao-hong Ding.

Ethics declarations

Ethical approval

According to the Submission guidelines, this section is not applicable because this manuscript is used for non-life science journals.

Consent to participate

According to the Submission guidelines, this section is not applicable because this manuscript is used for non-life science journals.

Consent to publish

All authors confirm that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis), that it is not under consideration for publication elsewhere, that its publication has been approved by all co-authors, and if any, that its publication has been approved (tacitly or explicitly) by the responsible authorities at the institution where the work is carried out.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to the MBS in Fig. 2, the detailed expressions of all the actual HTMs of position and orientation in Eq. (6) are shown as follows:

$$ {\mathrm{T}}_{12}^{\prime }=\left[\begin{array}{cccc}1& 0& 0& {p}_{2x}\\ {}0& 1& 0& {p}_{2y}\\ {}0& 0& 1& {p}_{2z}\\ {}0& 0& 0& 1\end{array}\right]{\mathrm{I}}_{4\times 4}{\mathrm{I}}_{4\times 4}{\mathrm{I}}_{4\times 4} $$
(19)
$$ {\displaystyle \begin{array}{c}{\mathrm{T}}_{23}^{\prime }=\left[\begin{array}{cccc}1& 0& 0& {p}_{3x}\\ {}0& 1& 0& {p}_{3y}\\ {}0& 0& 1& {p}_{3z}\\ {}0& 0& 0& 1\end{array}\right]\left[\begin{array}{cccc}1& 0& {S}_{xw}& 0\\ {}0& 1& -{S}_{yw}& 0\\ {}-{S}_{xw}& {S}_{yw}& 1& 0\\ {}0& 0& 0& 1\end{array}\right]\\ {}\left[\begin{array}{cccc}1& 0& 0& 0\\ {}0& 1& 0& 0\\ {}0& 0& 1& w\\ {}0& 0& 0& 1\end{array}\right]\left[\begin{array}{cccc}1& -{\varepsilon}_z(w)& {\varepsilon}_y(w)& {\delta}_x(w)\\ {}{\varepsilon}_z(w)& 1& -{\varepsilon}_x(w)& {\delta}_y(w)\\ {}-{\varepsilon}_y(w)& {\varepsilon}_x(w)& 1& {\delta}_z(w)\\ {}0& 0& 0& 1\end{array}\right]\end{array}} $$
(20)
$$ {\displaystyle \begin{array}{c}{\mathrm{T}}_{34}^{\prime }=\left[\begin{array}{cccc}1& 0& 0& {p}_{4x}\\ {}0& 1& 0& {p}_{4y}\\ {}0& 0& 1& {p}_{4z}\\ {}0& 0& 0& 1\end{array}\right]\left[\begin{array}{cccc}1& -{S}_{xy}& 0& 0\\ {}{S}_{xy}& 1& 0& 0\\ {}0& 0& 1& 0\\ {}0& 0& 0& 1\end{array}\right]\\ {}\left[\begin{array}{cccc}1& 0& 0& x\\ {}0& 1& 0& 0\\ {}0& 0& 1& 0\\ {}0& 0& 0& 1\end{array}\right]\left[\begin{array}{cccc}1& -{\varepsilon}_z(x)& {\varepsilon}_y(x)& {\delta}_x(x)\\ {}{\varepsilon}_z(x)& 1& -{\varepsilon}_x(x)& {\delta}_y(x)\\ {}-{\varepsilon}_y(x)& {\varepsilon}_x(x)& 1& {\delta}_z(x)\\ {}0& 0& 0& 1\end{array}\right]\end{array}} $$
(21)
$$ {\displaystyle \begin{array}{c}{\mathrm{T}}_{45}^{\prime }=\left[\begin{array}{cccc}1& 0& 0& {p}_{5x}\\ {}0& 1& 0& {p}_{5y}\\ {}0& 0& 1& {p}_{5z}\\ {}0& 0& 0& 1\end{array}\right]\left[\begin{array}{cccc}1& 0& {S}_{xz}& 0\\ {}0& 1& -{S}_{yz}& 0\\ {}-{S}_{xz}& {S}_{yz}& 1& 0\\ {}0& 0& 0& 1\end{array}\right]\\ {}\left[\begin{array}{cccc}1& 0& 0& 0\\ {}0& 1& 0& 0\\ {}0& 0& 1& z\\ {}0& 0& 0& 1\end{array}\right]\left[\begin{array}{cccc}1& -{\varepsilon}_z(z)& {\varepsilon}_y(z)& {\delta}_x(z)\\ {}{\varepsilon}_z(z)& 1& -{\varepsilon}_x(z)& {\delta}_y(z)\\ {}-{\varepsilon}_y(z)& {\varepsilon}_x(z)& 1& {\delta}_z(z)\\ {}0& 0& 0& 1\end{array}\right]\end{array}} $$
(22)
$$ {\mathrm{T}}_{56}^{\prime }=\left[\begin{array}{cccc}1& 0& 0& {p}_{6x}\\ {}0& 1& 0& {p}_{6y}\\ {}0& 0& 1& {p}_{6z}\\ {}0& 0& 0& 1\end{array}\right]{\mathrm{I}}_{4\times 4}{\mathrm{I}}_{4\times 4}{\mathrm{I}}_{4\times 4} $$
(23)
$$ {\mathrm{T}}_{17}^{\prime }=\left[\begin{array}{cccc}1& 0& 0& {p}_{7x}\\ {}0& 1& 0& {p}_{7y}\\ {}0& 0& 1& {p}_{7z}\\ {}0& 0& 0& 1\end{array}\right]{\mathrm{I}}_{4\times 4}\left[\begin{array}{cccc}1& 0& 0& 0\\ {}0& 1& 0& y\\ {}0& 0& 1& 0\\ {}0& 0& 0& 1\end{array}\right]\left[\begin{array}{cccc}1& -{\varepsilon}_z(y)& {\varepsilon}_y(y)& {\delta}_x(y)\\ {}{\varepsilon}_z(y)& 1& -{\varepsilon}_x(y)& {\delta}_y(y)\\ {}-{\varepsilon}_y(y)& {\varepsilon}_x(y)& 1& {\delta}_z(y)\\ {}0& 0& 0& 1\end{array}\right] $$
(24)
$$ {\displaystyle \begin{array}{c}{\mathrm{T}}_{78}^{\prime }=\left[\begin{array}{cccc}1& 0& 0& {p}_{8x}\\ {}0& 1& 0& {p}_{8y}\\ {}0& 0& 1& {p}_{8z}\\ {}0& 0& 0& 1\end{array}\right]\left[\begin{array}{cccc}1& 0& {S}_{xc}& 0\\ {}0& 1& -{S}_{yc}& 0\\ {}-{S}_{xc}& {S}_{yc}& 1& 0\\ {}0& 0& 0& 1\end{array}\right]\\ {}\left[\begin{array}{cccc}\cos \gamma & -\sin \gamma & 0& 0\\ {}\sin \gamma & \cos \gamma & 0& 0\\ {}0& 0& 1& 0\\ {}0& 0& 0& 1\end{array}\right]\left[\begin{array}{cccc}1& -{\varepsilon}_z\left(\gamma \right)& {\varepsilon}_y\left(\gamma \right)& {\delta}_x\left(\gamma \right)\\ {}{\varepsilon}_z\left(\gamma \right)& 1& -{\varepsilon}_x\left(\gamma \right)& {\delta}_y\left(\gamma \right)\\ {}-{\varepsilon}_y\left(\gamma \right)& {\varepsilon}_x\left(\gamma \right)& 1& {\delta}_z\left(\gamma \right)\\ {}0& 0& 0& 1\end{array}\right]\end{array}} $$
(25)
$$ {\mathrm{T}}_{89}^{\prime }=\left[\begin{array}{cccc}1& 0& 0& {p}_{9x}\\ {}0& 1& 0& {p}_{9y}\\ {}0& 0& 1& {p}_{9z}\\ {}0& 0& 0& 1\end{array}\right]{\mathrm{I}}_{4\times 4}{\mathrm{I}}_{4\times 4}{\mathrm{I}}_{4\times 4} $$
(26)

where pix, piy, and piz (j=2, 3, …, 9) are X, Y, and Z position coordinates in the Tijs of each body.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, Tj. & Ding, Xh. Tolerance analysis of the volumetric error of heavy-duty machine tool based on interval uncertainty. Int J Adv Manuf Technol 114, 2185–2199 (2021). https://doi.org/10.1007/s00170-021-06941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06941-7

Keywords

Navigation