Skip to main content
Log in

A comparison of different heat flux density distribution models to predict the temperature in the drilling process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work aims to improve heat flux distribution models to predict the temperature during drilling. The workpiece temperature is simulated by applying heat flux load only on the hole wall surface. Finite element method is used to simulate the temperature over process time. An iterative identification algorithm using particle swarm optimization (PSO) enables to identify the heat flux distribution parameters through the best fit of the experimental and calculated temperatures. Two heat flux density distributions presented in the literature, namely linear and polynomial, are investigated. A concentrated heat flux distribution is calculated based on measured torque and serves for a comparison purpose. Additionally, the polynomial approach is expanded by adding a concentrated heat flux in order to compensate the lack of hole bottom surface. The best results in terms of residual temperature are obtained for the hybrid heat flow distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aurich JC, Zimmermann M, Schindler S, Steinmann P (2014) Analysis of the machining accuracy when dry turning via experiments and finite element simulations. Prod Eng 8(1-2):41–50

    Article  Google Scholar 

  2. Battaglia J, Puigsegur L, Cahuc O (2005) Estimated temperature on a machined surface using an inverse approach. Exp Heat Transfer 18(1):13–32

    Article  Google Scholar 

  3. Biermann D, Iovkov I (2013) Modeling and simulation of heat input in deep-hole drilling with twist drills and MQL. Procedia CIRP 8:88–93

    Article  Google Scholar 

  4. Biermann D, Iovkov I, Blum H, Rademacher A, Taebi K, Suttmeier F, Klein N (2012) Thermal aspects in deep hole drilling of aluminium cast alloy using twist drills and MQL. Procedia CIRP 3:245–250

    Article  Google Scholar 

  5. Blanc G, Raynaud M, Chau TH (1998) A guide for the use of the function specification method for 2D inverse heat conduction problems. Revue gé,nérale de thermique 37(1):17–30

    Article  Google Scholar 

  6. Bono M, Ni J (2002) A model for predicting the heat flow into the workpiece in dry drilling. J Manuf Sci Eng 124(4):773–777

    Article  Google Scholar 

  7. Bono M, Ni J (2006) The location of the maximum temperature on the cutting edges of a drill. Int J Mach Tools Manuf 46(7):901–907

    Article  Google Scholar 

  8. Chen L, Tai BL, Yang JA, Shih AJ (2017) Experimental study and finite element modeling of workpiece temperature in finish cylinder boring. J Manuf Sci Eng 111(11):003

    Google Scholar 

  9. Cui M, Gao X, Zhang J (2012) A new approach for the estimation of temperature-dependent thermal properties by solving transient inverse heat conduction problems. Int J Therm Sci 58:113–119

    Article  Google Scholar 

  10. Deng S, Hwang Y (2006) Applying neural networks to the solution of forward and inverse heat conduction problems. Int J Heat Mass Transfer 49(25):4732–4750

    Article  MATH  Google Scholar 

  11. Denkena B, Schmidt C, Krüger M (2010) Experimental investigation and modeling of thermal and mechanical influences on shape deviations in machining structural parts. Int J Mach Tools Manuf 50 (11):1015–1021

    Article  Google Scholar 

  12. Faverjon P, Rech J, Valiorgue F, Orsetti M (2015) Optimization of a multi-drilling sequence with MQL supply to minimize thermal distortion of aluminum parts. J Mach Eng 15

  13. Fleischer J, Pabst R, Kelemen S (2007) Heat flow simulation for dry machining of power train castings. CIRP Ann-Manuf Technol 56(1):117–122

    Article  Google Scholar 

  14. Gosselin L, Tye-Gingras M, Mathieu-Potvin F (2009) Review of utilization of genetic algorithms in heat transfer problems. Int J Heat Mass Transfer 52(9):2169–2188

    Article  MATH  Google Scholar 

  15. Han S, Faverjon P, Valiorgue F, Rech J (2018) Prediction and modeling of thermal distortion in sequential MQL drilling of AlSi7 cylindrical parts. Procedia CIRP 77:336–339

    Article  Google Scholar 

  16. Kakade N, Chow J (1993) Finite element analysis of engine bore distortions during boring operation. Trans-Am Soc Mech Eng J Eng Ind 115:379–379

    Google Scholar 

  17. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, pp 1942–1948

  18. Klocke F (2018) Fertigungsverfahren 1 – Zerspanung mit geometrisch bestimmter Schneide. Berlin, Springer Vieweg

    Book  Google Scholar 

  19. Kuzu A, Berenji KR, Ekim B, Bakkal M (2017) The thermal modeling of deep-hole drilling process under MQL condition. J Manuf Process 29:194–203

    Article  Google Scholar 

  20. Lauro CH, Brandão L C, Vale TJS, Luis Christóforo A (2013) An approach to define the heat flow in drilling with different cooling systems using finite element analysis. Adv Mech Eng 5:612, 747

    Article  Google Scholar 

  21. Lu S, Heng Y, Mhamdi A (2012) A robust and fast algorithm for three-dimensional transient inverse heat conduction problems. Int J Heat Mass Transfer 55(25):7865–7872

    Article  Google Scholar 

  22. Macedo SEM (2015) Thermoelastische verformungen von werkstücken aus leichtmetall bei der trockenbearbeitung. Rheinisch-Westfälischen Technischen Hochschule Aachen. Dr.-Ing. Dissertation., Aachen

    Google Scholar 

  23. Ozisik MN (2000) Inverse heat transfer: fundamentals and applications. CRC Press, Cleveland

    Google Scholar 

  24. Pontes DW (2017) Experimental and numerical determination of the forced convection coefficient of the cutting fluid in drilling machining (in Portuguese). Master’s thesis, Universidade do Estado de Santa Catarina

  25. Sato M, Aoki T, Tanaka H, Takeda S (2013) Variation of temperature at the bottom surface of a hole during drilling and its effect on tool wear. Int J Mach Tools Manuf 68:40–47

    Article  Google Scholar 

  26. Segurajauregui U, Arrazola PJ (2015) Heat-flow determination through inverse identification in drilling of aluminium workpieces with MQL. Prod Eng 9(4):517–526

    Article  Google Scholar 

  27. Soković M, Mijanović K (2001) Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes. J Mater Process Technol 109(1):181–189

    Article  Google Scholar 

  28. Tai BL, Stephenson DA, Shih AJ (2012) An inverse heat transfer method for determining workpiece temperature in minimum quantity lubrication deep hole drilling. J Manuf Sci Eng 134(2):021,006

    Article  Google Scholar 

  29. Tai BL, Stephenson DA, Shih AJ (2013) Workpiece temperature during deep-hole drilling of cast iron using high air pressure minimum quantity lubrication. J Manuf Sci Eng 135(3):031,019

    Article  Google Scholar 

  30. Yusup N, Zain AM, Hashim SZM (2012) Overview of pso for optimizing process parameters of machining. Procedia Eng 29:914–923

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the research funding agencies CAPES for the scholarships granted to the post-graduate student participating in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Martins Crichigno Filho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medeiros, J.C., Filho, J.M.C. A comparison of different heat flux density distribution models to predict the temperature in the drilling process. Int J Adv Manuf Technol 109, 1997–2008 (2020). https://doi.org/10.1007/s00170-020-05720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05720-0

Keywords

Navigation