Skip to main content
Log in

Experimental study of multi-stable morphing structures actuated by pneumatic actuation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, we proposed a new pneumatic actuation method inspired from a soft robot, which could drive the multi-stable carbon fiber-reinforced polymer (CFRP) structure transition among five stable configurations under air pressure. Multi-stable structure was manufactured by the carbon fiber prepreg laid in asymmetrical and anti-symmetric layup methods and stacked at the joint during the preparation process according to the designed scheme. In experiments, multi-stable structures with two different fibers layups were prepared to study the snap-through behaviors. The snap-through process of two kinds of multi-stable structures was investigated by experiment. The parameters used to characterize efficiency of the pneumatic actuator actuating the multi-stable structures, including air pressure and snap time, were measured. The influence of the pneumatic actuator on the curvature of multi-stable structures was discussed by comparing the shape characteristic of multi-stable structures with or without pneumatic actuation, and it showed pneumatic actuator has little effect to the structure. The results demonstrated that the proposed pneumatic actuation could be used to drive multi-stable morphing structure flexibly. The combination of multi-stable laminates develops the function of multiple point bending and shape retention of pneumatic actuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Zhang Z, Li Y, Yu XC, Li XH, Wu HL, Wu HP, Jiang SF, Chai GZ (2019) Bistable morphing composite structures: a review. Thin-Walled Struct 142:74–97. https://doi.org/10.1016/j.tws.2019.04.040

    Article  Google Scholar 

  2. Zhang Z, Wu HP, Ye GF, Wu HL, He XQ, Chai GZ (2014) Systematic experimental and numerical study of bistable snap processes for anti-symmetric cylindrical shells. Compos Struct 112:368–377. https://doi.org/10.1016/j.compstruct.2014.02.030

    Article  Google Scholar 

  3. Zhang Z, Li Y, Wu H, Zhang H, Wu H, Jiang S, Chai G (2018) Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory. Mech Adv Mater Struct:1–9. https://doi.org/10.1080/15376494.2018.1444216

  4. Zhang Z, Chen BB, Lu CD, Wu HL, Wu HP, Jiang SF, Chai GZ (2017) A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface. Compos Struct 180:933–943. https://doi.org/10.1016/j.compstruct.2017.08.068

    Article  Google Scholar 

  5. Zhang Z, Li Y, Wu HL, Chen DD, Yang J, Wu HP, Jiang SF, Chai GZ (2018) Viscoelastic bistable behaviour of antisymmetric laminated composite shells with time-temperature dependent properties. Thin-Walled Struct 122:403–415. https://doi.org/10.1016/j.tws.2017.10.036

    Article  Google Scholar 

  6. Zhang Z, Ma WL, Wu HL, Wu HP, Jiang SF, Chai GZ (2018) A rigid thick Miura-ori structure driven by bistable carbon fibre-reinforced polymer cylindrical shell. Compos Sci Technol 167:411–420. https://doi.org/10.1016/j.compscitech.2018.08.033

    Article  Google Scholar 

  7. Kim SW, Koh JS, Lee JG, Ryu J, Cho M, Cho KJ (2014) Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface. Bioinspir Biomim 9(3):036004. https://doi.org/10.1088/1748-3182/9/3/036004

    Article  Google Scholar 

  8. Zhang Z, Wu HL, He XQ, Wu HP, Bao YM, Chai GZ (2013) The bistable behaviors of carbon-fiber/epoxy anti-symmetric composite shells. Compos Part B 47:190–199. https://doi.org/10.1016/j.compositesb.2012.10.040

    Article  Google Scholar 

  9. Arrieta AF, Kuder IK, Rist M, Waeber T, Ermanni P (2014) Passive load alleviation aerofoil concept with variable stiffness multi-stable composites. Compos Struct 116:235–242. https://doi.org/10.1016/j.compstruct.2014.05.016

    Article  Google Scholar 

  10. Schultz MR (2008) A concept for airfoil-like active bistable twisting structures. J Intell Mater Syst Struct 19(2):157–169. https://doi.org/10.1177/1045389x06073988

    Article  Google Scholar 

  11. Kuder IK, Arrieta AF, Rist M, Ermanni P (2016) Aeroelastic response of a selectively compliant morphing aerofoil featuring integrated variable stiffness bi-stable laminates. J Intell Mater Syst Struct 27(14):1949–1966. https://doi.org/10.1177/1045389x15620038

    Article  Google Scholar 

  12. Diaconu CG, Weaver PM, Mattioni F (2008) Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin-Walled Struct 46(6):689–701. https://doi.org/10.1016/j.tws.2007.11.002

    Article  Google Scholar 

  13. Arrieta AF, Kuder IK, Waeber T, Ermanni P (2014) Variable stiffness characteristics of embeddable multi-stable composites. Compos Sci Technol 97:12–18. https://doi.org/10.1016/j.compscitech.2014.03.017

    Article  Google Scholar 

  14. Haldar A, Reinoso J, Jansen E, Rolfes R (2018) Thermally induced multistable configurations of variable stiffness composite plates: semi-analytical and finite element investigation. Compos Struct 183:161–175. https://doi.org/10.1016/j.compstruct.2017.02.014

    Article  Google Scholar 

  15. Dai FH, Li H, Du SY (2013) A multi-stable lattice structure and its snap-through behavior among multiple states. Compos Struct 97:56–63. https://doi.org/10.1016/j.compstruct.2012.10.016

    Article  Google Scholar 

  16. Hufenbach W, Gude M, Kroll L (2002) Design of multistable composites for application in adaptive structures. Compos Sci Technol 62(16):2201–2207. https://doi.org/10.1016/s0266-3538(02)00159-8

    Article  Google Scholar 

  17. Kim HA, Betts DN, Salo AIT, Bowen CR (2010) Shape memory alloy-piezoelectric active structures for reversible actuation of bistable composites. AIAA J 48(6):1265–1268. https://doi.org/10.2514/1.j050100

    Article  Google Scholar 

  18. Lee JG, Ryu J, Lee H, Cho M (2014) Saddle-shaped, bistable morphing panel with shape memory alloy spring actuator. Smart Mater Struct 23(7):9. https://doi.org/10.1088/0964-1726/23/7/074013

    Article  Google Scholar 

  19. Hu JQ, Lin S, Dai FH (2017) Pattern reconfigurable antenna based on morphing bistable composite laminates. IEEE Trans Antennas Propag 65(5):2196–2207. https://doi.org/10.1109/tap.2017.2677258

    Article  Google Scholar 

  20. Eckstein E, Pirrera A, Weaver PM (2016) Thermally driven morphing and snap-through behavior of hybrid laminate shells. AIAA J 54(5):1778–1788. https://doi.org/10.2514/1.j054648

    Article  Google Scholar 

  21. Eckstein E, Pirrera A, Weaver PM (2013) Morphing high-temperature composite plates utilizing thermal gradients. Compos Struct 100:363–372. https://doi.org/10.1016/j.compstruct.2012.12.049

    Article  Google Scholar 

  22. Zhang Z, Ye GF, Wu HP, Wu HL, Chen DD, Chai GZ (2015) Thermal effect and active control on bistable behaviour of anti-symmetric composite shells with temperature-dependent properties. Compos Struct 124:263–271. https://doi.org/10.1016/j.compstruct.2015.01.024

    Article  Google Scholar 

  23. Zhang Z, Chen DD, Wu HP, Bao YM, Chai GZ (2016) Non-contact magnetic driving bioinspired Venus flytrap robot based on bistable anti-symmetric CFRP structure. Compos Struct 135:17–22. https://doi.org/10.1016/j.compstruct.2015.09.015

    Article  Google Scholar 

  24. Hou X, Liu Y, Wan GC, Xu Z, Wen CS, Yu H, Zhang JXJ, Li JB, Chen Z (2018) Magneto-sensitive bistable soft actuators: experiments, simulations, and applications. Appl Phys Lett 113(22):5. https://doi.org/10.1063/1.5062490

    Article  Google Scholar 

  25. Ma WL, Zhang Z, Zhang H, Li Y, Wu HP, Jiang SF, Chai G (2019) An origami-inspired cube pipe structure with bistable anti-symmetric CFRP shells driven by magnetic field. Smart Mater Struct 28(2). https://doi.org/10.1088/1361-665X/aaf6ba

  26. Loukaides EG, Smoukov SK, Seffen KA (2014) Magnetic actuation and transition shapes of a bistable spherical cap. Int J Smart Nano Mater (UK) 5(4):270–282. https://doi.org/10.1080/19475411.2014.997322

    Article  Google Scholar 

  27. Bashir M, Rajendran P (2018) A review on electroactive polymers development for aerospace applications. J Intell Mater Syst Struct 29(19):3681–3695. https://doi.org/10.1177/1045389x18798951

    Article  Google Scholar 

  28. Arrieta AF, van Gemmeren V, Anderson AJ, Weaver PM (2018) Dynamics and control of twisting bi-stable structures. Smart Mater Struct 27(2):14. https://doi.org/10.1088/1361-665X/aa96d3

    Article  Google Scholar 

  29. Lee AJ, Moosavian A, Inman DJ (2017) Control and characterization of a bistable laminate generated with piezoelectricity. Smart Mater Struct 26(8):15. https://doi.org/10.1088/1361-665X/aa7165

    Article  Google Scholar 

  30. Shintake J, Cacucciolo V, Floreano D, Shea H (2018) Soft robotic grippers. Adv Mater 30(29):33. https://doi.org/10.1002/adma.201707035

    Article  Google Scholar 

  31. Galloway KC, Becker KP, Phillips B, Kirby J, Licht S, Tchernov D, Wood RJ, Gruber DF (2016) Soft robotic grippers for biological sampling on deep reefs. Soft Robot 3(1):23–33. https://doi.org/10.1089/soro.2015.0019

    Article  Google Scholar 

  32. Jiang P, Yang Y, Chen MZQ, Chen Y (2019) A variable stiffness gripper based on differential drive particle jamming. Bioinspir Biomim 14(3):036009. https://doi.org/10.1088/1748-3190/ab04d1

    Article  Google Scholar 

  33. Alici G, Canty T, Mutlu R, Hu WP, Sencadas V (2018) Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers. Soft Robot 5(1):24–35. https://doi.org/10.1089/soro.2016.0052

    Article  Google Scholar 

  34. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst 73:135–143. https://doi.org/10.1016/j.robot.2014.08.014

    Article  Google Scholar 

  35. Yuk H, Lin ST, Ma C, Takaffoli M, Fang NX, Zhao XH (2017) Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun 8:12. https://doi.org/10.1038/ncomms14230

    Article  Google Scholar 

  36. Mosadegh B, Polygerinos P, Keplinger C, Wennstedt S, Shepherd RF, Gupta U, Shim J, Bertoldi K, Walsh CJ, Whitesides GM (2014) Pneumatic networks for soft robotics that actuate rapidly. Adv Funct Mater 24(15):2163–2170. https://doi.org/10.1002/adfm.201303288

    Article  Google Scholar 

  37. Zhang HY, Kumar S, Chen FF, Fuh JYH, Wang MY (2019) Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands. IEEE-ASME Trans Mechatron 24(1):120–131. https://doi.org/10.1109/tmech.2018.2874067

    Article  Google Scholar 

  38. Pan LF, Yao PF, Zhang YQ, Bao GJ, IEEE (2018) Bending and wrinkled model research of a soft robot inspired by octopus. 2018 3rd IEEE International Conference on Advanced Robotics and Mechatronics. IEEE, New York

  39. Ge JZ, Calderon AA, Chang LL, Perez-Arancibia NO (2019) An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion. Bioinspir Biomim 14(3):17. https://doi.org/10.1088/1748-3190/aae7bb

    Article  Google Scholar 

  40. Justus K, Saurabh S, Bruchez M, Majidi C, LeDuc P, Tan C (2014) Integrating synthetic cells and flexible electronics for the control of bio-opto-fluidic materials. Biophys J 106(2):617A–618A. https://doi.org/10.1016/j.bpj.2013.11.3417

    Article  Google Scholar 

  41. Hawkes EW, Blumenschein LH, Greer JD, Okamura AM (2017) A soft robot that navigates its environment through growth. Sci Robot 2(8):7. https://doi.org/10.1126/scirobotics.aan3028

    Article  Google Scholar 

  42. Alambeigi F, Seifabadi R, Armand M, IEEE (2016) A continuum manipulator with phase changing alloy. IEEE Int Conf Robot Autom. https://doi.org/10.1109/icra.2016.7487204

  43. Wang W, Rodrigue H, Ahn S-H (2016) Deployable soft composite structures. Sci Rep 6:20869. https://doi.org/10.1038/srep20869

    Article  Google Scholar 

  44. Amend JR, Brown E, Rodenberg N, Jaeger HM, Lipson H (2012) A positive pressure universal gripper based on the jamming of granular material. IEEE Trans Robot 28(2):341–350. https://doi.org/10.1109/tro.2011.2171093

    Article  Google Scholar 

  45. Yoshida S, Morimoto Y, Zheng LY, Onoe H, Takeuchi S (2018) Multipoint bending and shape retention of a pneumatic bending actuator by a variable stiffness endoskeleton. Soft Robot 5(6):718–725. https://doi.org/10.1089/soro.2017.0145

    Article  Google Scholar 

  46. Formlabs, US. https://formlabs.com

  47. Yao PF, Li K, Xu ZG, Wang ZH, Bao GJ, IEEE (2017) Bending model of a novel long-arm biomimetic robot. IEEE International Conference on Real-Time Computing and Robotics. IEEE, New York

    Google Scholar 

  48. Chen LF, Zhang YQ, Pan LF, Bao GJ, IEEE (2018) A new type of soft actuator: design and fabrication. Proceedings of 2018 IEEE international conference on real-time computing and robotics. IEEE, New York

  49. 3M, Unites States. https://www.3m.com/3M/en_US/company-us/about-3m/

  50. Ausbond, China. https://ausbond.en.china.cn/

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant Nos. 51675485, 11672269, 51775510) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18E050002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Liao, C., Li, Y. et al. Experimental study of multi-stable morphing structures actuated by pneumatic actuation. Int J Adv Manuf Technol 108, 1203–1216 (2020). https://doi.org/10.1007/s00170-020-05301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05301-1

Keywords

Navigation