Skip to main content
Log in

An investigation into the abrasive waterjet milling circular pocket on titanium alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents an experimental study on abrasive waterjet (AWJ) milling circular pockets of the titanium alloy Ti6Al4V workpieces. A material removal model is firstly deduced to understand the erosion process of AWJ milling. Experiments are conducted to research the effects of the processing parameters (water pressure, abrasive flow rate, traverse speed, and stand-off distance) on the performance of the milled circular pockets of Ti6Al4V workpieces. Dominating parameters and their interactive effects on the milling depth and roughness of milled surfaces are presented based on Box-Behnken design method. A comparative analysis is taken for the average milling depth, which is dominated by several dimensionless variables that control the final performance involved in the milled circular pocket. Subsequently, through quantitative assessments by the experiments, predictions by the material removal model are in good agreement with experimental results with an average deviation of 3.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

Average depth coefficient

C d :

Discharge coefficient

C e :

Material property constant

d c :

Diameter of milling circular pocket (mm)

d 0 :

Diameter of focusing nozzle (mm)

E :

Modulus of elasticity (MPa)

h av :

Average milling depth (mm)

h 1 :

Relative height of orifice entrance (mm)

h 2 :

Relative height of orifice exit (mm)

H V :

Vickers hardness (MPa)

K e :

Effective abrasive impact coefficient

L :

Milling path length

m a :

Abrasive flow rate (g/min)

m p :

Mass of an abrasive particle (g)

m j :

Mass flow rate of waterjet (g/min)

P :

Water pressure (MPa)

P 0 :

Standard atmospheric pressure (MPa)

SOD :

Stand-off distance (mm)

s :

Step-over distance

t :

Unit of time

TS :

Traverse speed (mm/min)

ν 1 :

Waterjet velocity before orifice (m/s)

ν j :

High-pressure water outlet velocity (m/s)

ν p :

Abrasive velocity (m/s)

ν p0 :

Velocity of abrasives before ejection from the focusing nozzle (m/s)

V O :

Over material Removal Rate (mm3)

∆V :

Material removal rate of a single abrasive (mm3)

σ f :

Material flow stress (MPa)

ρ 0 :

Water density at ambient water pressure (MPa)

ρ 1 :

Water density at high pressure (MPa)

η t :

Momentum transfer efficiency

μ f :

Water orifice friction coefficient

α i :

Exponential constant

λ i :

Exponential constant

References

  1. Hashish M (1984) A modeling study of metal cutting with abrasive waterjets. J Eng Mat Tech 106:88–100. https://doi.org/10.1115/1.3225682

    Article  Google Scholar 

  2. Srinivasu D, Axinte D (2014) Mask-less pocket milling of composites by abrasive waterjets: an experimental investigation. ASME J Manuf Sci Eng 136:1–13. https://doi.org/10.1115/1.4027181

    Article  Google Scholar 

  3. Azhari A (2012) Improving surface hardness of austenitic stainless steel using waterjet peening process. Int J Adv Manuf Technol 63:1035–1046. https://doi.org/10.1007/s00170-012-3962-1

    Article  Google Scholar 

  4. Kong MC, Axinte D, Voice W (2010) Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide. J Mater Process Technol 210:573–584. https://doi.org/10.1016/j.jmatprotec.2009.11.009

    Article  Google Scholar 

  5. Kong MC, Axinte D, Voice W (2011) Challenges in using waterjet machining of NiTi shape memory alloys: an analysis of controlled-depth milling. J Mater Process Technol 211:959–971. https://doi.org/10.1016/j.jmatprotec.2010.12.015

    Article  Google Scholar 

  6. Li H, Wang J (2015) An experimental study of abrasive waterjet machining of Ti-6Al-4V. Int J Adv Manuf Technol 81:361–369. https://doi.org/10.1007/s00170-015-7245-5

    Article  Google Scholar 

  7. Seo Y, Ramulu M, Kim D (2003) Machinability of titanium alloy (Ti-6Al-4V) by abrasive waterjets. Proc Inst Mech Eng B 217:1709–1721. https://doi.org/10.1243/095440503772680631

    Article  Google Scholar 

  8. Hascalik A, Çaydaş U, Gürün H (2007) Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy. Mater Des 28:1953–1957. https://doi.org/10.1016/j.matdes.2006.04.020

    Article  Google Scholar 

  9. Fowler G, Shipway PH, Pashby IR (2005) Abrasive water-jet controlled depth milling of Ti6Al4V alloy – an investigation of the role of jet–workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J Mater Process Technol 161:407–414. https://doi.org/10.1016/j.jmatprotec.2004.07.069

    Article  Google Scholar 

  10. Anwar S, Axinte DA, Becker AA (2013) Finite element modelling of overlapping abrasive waterjet milled footprints. J Mater Process Tech 213:180–193. https://doi.org/10.1016/j.wear.2013.03.018

    Article  Google Scholar 

  11. Manu R, Babu NR (2009) An erosion-based model for abrasive waterjet turning of ductile materials. Wear 266:1091–1097. https://doi.org/10.1016/j.wear.2009.02.008

    Article  Google Scholar 

  12. Paul S, Hoogstrate AM, Luttervelt CAV, Kals HJJ (1998) An experimental investigation of rectangular pocket milling with abrasive water jet. J Mater Process Technol 73:179–188. https://doi.org/10.1016/S0924-0136(97)00227-6

    Article  Google Scholar 

  13. Oh TM, Cho GC (2016) Rock cutting depth model based on kinetic energy of abrasive waterjet. Rock Mech Rock Eng 49:1059–1072. https://doi.org/10.1007/s00603-015-0778-y

    Article  Google Scholar 

  14. Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49:306–316. https://doi.org/10.1016/j.ijmecsci.2006.09.005

    Article  Google Scholar 

  15. Kong MC, Anwar S, Billingham J, Axinte DA (2012) Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part I—single straight paths. Int J Mach Tools Manuf 53:58–68. https://doi.org/10.1016/j.ijmachtools.2011.09.010

    Article  Google Scholar 

  16. Ali YM, Wang J (2011) Impact Abrasive machining. In: Jackson MJ, Davim JP (eds) Machining with abrasives. Springer, West Lafayette, pp 385–422

    Chapter  Google Scholar 

  17. Oh TM, Cho GC (2012) Effect of abrasive waterjet parameters on rock removal. J Korean Tunn Undergr Space Assoc 14:421–435. https://doi.org/10.9711/KTAJ.2012.14.4.421

    Article  Google Scholar 

  18. Zeng J, Kim TJ (1996) An erosion model for abrasive waterjet milling of polycrystalline ceramics. Wear 199:275–282. https://doi.org/10.1016/0043-1648(96)07223-7

    Article  Google Scholar 

  19. Nguyen T, Wang J, Li W (2015) Process models for controlled-depth abrasive waterjet milling of amorphous glasses. Int J Adv Manuf Technol 77:1177–1189. https://doi.org/10.1007/s00170-014-6514-z

    Article  Google Scholar 

  20. Momber AW (2001) Energy transfer during the mixing of air and solid particles into a high-speed waterjet: an impact-force study. Exp Thermal Fluid Sci 25:31–41. https://doi.org/10.1016/S0894-1777(01)00057-7

    Article  Google Scholar 

  21. Boguslawski L, Popiel CO (1979) Flow structure of the free round turbulent jet in the initial region. J Fluid Mech 90:531–539. https://doi.org/10.1017/S0022112079002378

    Article  Google Scholar 

  22. Neusen KF, Gores TJ, Labus TJ (1992) Measurement of particle and drop velocities in a mixed abrasive water jet using a forward-scatter LDV system. Jet Cutting Technol 1992:63–74. https://doi.org/10.1007/978-94-011-2678-6-5

    Article  Google Scholar 

  23. Buckingham E (1914) On physically similar systems: illustrating the use of dimensional analysis. Phys Rev 4:345–376. https://doi.org/10.1103/PhysRev.4.345

    Article  Google Scholar 

  24. Zeng J, Wu S, Kim TJ (1994) Development of a parameter prediction model for abrasive waterjet turning. In: Proceedings of 12th International Conference on Jet Cutting Technology. Rouen, Mechanical Engineering Publication Limited, London, pp 601–617

    Google Scholar 

  25. Ay M, Çaydaş U, Hasçalik A (2010) Effect of traverse speed on abrasive waterjet machining of age hardened Inconel 718 nickel-based superalloy. Mater Manuf Process 25:1160–1165. https://doi.org/10.1080/10426914.2010.502953

    Article  Google Scholar 

  26. Karakurt I, Aydin G, Aydiner K (2012) An experimental study on the depth of cut of granite in abrasive waterjet cutting. Mater Manuf Process 27:538–544. https://doi.org/10.1080/10426914.2011.593231

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge fundings from National Key Research and Development Project (2018YFB2001603 ), Joint Fund of MOE and GAD (6141A02022133), NSFC-Liaoning Joint Fund (U1708256, U1908232), and Fundamental Research Funds for the Central Universities (DUT18GF104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanping Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Chen, J., Gao, H. et al. An investigation into the abrasive waterjet milling circular pocket on titanium alloy. Int J Adv Manuf Technol 107, 4503–4515 (2020). https://doi.org/10.1007/s00170-020-05294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05294-x

Keywords

Navigation