Skip to main content
Log in

Non-destructive surface characterization of reverse micro-EDM-induced arrayed μ-features with varying aspect ratio

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Reverse micro-EDM (RMEDM), a contactless electro-thermal micro-machining process, is extensively used for generating array of similar aspect ratio of protruded micro-features. The drawback of this process is the formation of recast layer on the fabricated surface that has different mechanical and chemical properties as compared with the base material. Usually, destructive characterization techniques are employed to assess the extent of recast layer formation which eventually renders the surface unusable for any further application. This study, therefore, initially aims to extend the capabilities of the existing RMEDM process in generating simultaneously varying aspect ratio of arrayed micro-features. Furthermore, the measurement of recast layer thickness on each micro-feature was carried out using 3-D X-ray micro-computed tomography (XMCT). This is the first instance of using XMCT for recast layer measurement, to the best of our knowledge. Finally, surface roughness analysis was carried out on the micro-features. Results from this study showed that arrayed micro-features of varying aspect ratios can be fabricated using RMEDM with tapered blind holes as tool (hole depths of 0.1 mm, 0.3 mm, and 0.5 mm). The height of fabricated micro-features on the array is limited by the corresponding hole depths on the tool. Also, increase in the height of micro-feature results in an increase in the thickness of recast layer (~ 20 μm, ~ 30 μm, and ~ 35 μm, respectively). Debris agglomeration and adhesion lead to occurrences of abnormal discharges resulting in higher surface roughness at the sides (maximum of ~ 9 μm). However, surface roughness was comparatively less at other locations on the micro-feature (maximum of ~ 2 μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Feng C, Xiao Z, Chan PCH, Hsing IM (2006) Lithography-free silicon micro-pillars as catalyst supports for microfabricated fuel cell applications. Electrochem Commun 8:1235–1238. https://doi.org/10.1016/j.elecom.2006.05.020

    Article  Google Scholar 

  2. Elbersen R, Vijselaar W, Tiggelaar RM, Gardeniers H, Huskens J (2015) Fabrication and doping methods for silicon nano- and micropillar arrays for solar-cell applications: a review. Adv Mater 27:6781–6796

    Article  Google Scholar 

  3. Kwon J, Cheung E, Park S, Sitti M (2006) Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. Biomed Mater 1:216–220. https://doi.org/10.1088/1748-6041/1/4/007

    Article  Google Scholar 

  4. Holczer E, Fürjes P (2014) Effects of micropatterning and surface modification of microfluidic channels on capillary water transport. Procedia Eng 87:492–495. https://doi.org/10.1016/j.proeng.2014.11.403

    Article  Google Scholar 

  5. Li X-M, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368. https://doi.org/10.1039/b602486f

    Article  Google Scholar 

  6. Obikawa T, Kamio A, Takaoka H, Osada A (2011) Micro-texture at the coated tool face for high performance cutting. Int J Mach Tools Manuf 51:966–972. https://doi.org/10.1016/j.ijmachtools.2011.08.013

    Article  Google Scholar 

  7. Wakuda M, Yamauchi Y, Kanzaki S, Yasuda Y (2003) Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 254:356–363. https://doi.org/10.1016/S0043-1648(03)00004-8

    Article  Google Scholar 

  8. Scaraggi M, Mezzapesa FP, Carbone G, Ancona A, Sorgente D, Lugara PM (2014) Minimize friction of lubricated laser-microtextured-surfaces by tuning microholes depth. Tribol Int 75:123–127. https://doi.org/10.1016/j.triboint.2014.03.014

    Article  Google Scholar 

  9. Tala-Ighil N, Fillon M, Maspeyrot P (2011) Effect of textured area on the performances of a hydrodynamic journal bearing. Tribol Int 44:211–219. https://doi.org/10.1016/j.triboint.2010.10.003

    Article  Google Scholar 

  10. Roy T, Sabharwal TP, Kumar M, Ranjan P, Balasubramaniam R (2020) Mathematical modelling of superhydrophobic surfaces for determining the correlation between water contact angle and geometrical parameters. Precis Eng 61:55–64. https://doi.org/10.1016/j.precisioneng.2019.10.005

    Article  Google Scholar 

  11. Malek CK, Saile V (2004) Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review. Microelectron J 35:131–143

    Article  Google Scholar 

  12. Kim BH, Park BJ, Chu CN (2006) Fabrication of multiple electrodes by reverse EDM and their application in micro ECM. J Micromech Microeng 16:843–850. https://doi.org/10.1088/0960-1317/16/4/022

    Article  Google Scholar 

  13. Roy T, Datta D, Balasubramaniam R (2015) Study on the fabrication of micro pillars of varying height and shape simultaneously using reverse micro electrical discharge machining. In: 9th International Conference on Precision, Meso, Micro and Nano Engineering (COPEN). Mumbai

  14. Roy T, Datta D, Balasubramaniam R (2018) Numerical modelling, simulation and fabrication of 3-D hemi-spherical convex micro features using reverse micro EDM. J Manuf Process 32:344–356. https://doi.org/10.1016/j.jmapro.2018.02.018

    Article  Google Scholar 

  15. Roy T, Balasubramaniam R (2019) Effect of various factors influencing the generation of hemispherical micro features using non-conformal RMEDM. J Micromanuf 2:110–122. https://doi.org/10.1177/2516598419829593

    Article  Google Scholar 

  16. Yildiz Y, Sundaram MM, Rajurkar KP, Altintas A (2015) Correlation of surface roughness and recast layer thickness in electrical discharge machining. Proc IMechE Part E J Process Mech Eng 231:414–424. https://doi.org/10.1177/0954408915600949

    Article  Google Scholar 

  17. Gostimirovic M, Kovac P, Sekulic M, Skoric B (2012) Influence of discharge energy on machining characteristics in EDM. J Mech Sci Technol 26:173–179. https://doi.org/10.1007/s12206-011-0922-x

    Article  Google Scholar 

  18. Lauwers B, Kruth JP, Liu W, Eeraerts W, Schacht B, Bleys P (2004) Investigation of material removal mechanisms in EDM of composite ceramic materials. J Mater Process Technol 149:347–352. https://doi.org/10.1016/j.jmatprotec.2004.02.013

    Article  Google Scholar 

  19. Thao O, Joshi SS (2008) Analysis of heat affected zone in the micro-electric discharge machining. Int J Manuf Technol Manag 13:201. https://doi.org/10.1504/IJMTM.2008.016771

    Article  Google Scholar 

  20. Zhang Y, Liu Y, Ji R, Cai B (2011) Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric. Appl Surf Sci 257:5989–5997. https://doi.org/10.1016/j.apsusc.2011.01.083

    Article  Google Scholar 

  21. Ramasawmy H, Blunt L, Rajurkar KP (2005) Investigation of the relationship between the white layer thickness and 3D surface texture parameters in the die sinking EDM process. Precis Eng 29:479–490. https://doi.org/10.1016/j.precisioneng.2005.02.001

    Article  Google Scholar 

  22. Yildiz Y (2016) Prediction of white layer thickness and material removal rate in electrical discharge machining by thermal analyses. J Manuf Process 23:47–53. https://doi.org/10.1016/j.jmapro.2016.05.018

    Article  Google Scholar 

  23. Guu YH, Hocheng H, Chou CY, Deng CS (2003) Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel. Mater Sci Eng A 358:37–43. https://doi.org/10.1016/S0921-5093(03)00272-7

    Article  Google Scholar 

  24. Gil R, Sanchez JA, Plaza S, Ortega N, Izquierdo B, Pombo I (2013) Modeling recast layer and surface finish in the manufacturing of high – aspect ratio micro-tools using the inverse slab electrical discharge milling process. Proc IMechE Part B J Eng Manuf 228:553–562. https://doi.org/10.1177/0954405413502024

    Article  Google Scholar 

  25. Kumar A, Kumar V, Kumar J (2016) Surface crack density and recast layer thickness analysis in WEDM process through response surface methodology. Mach Sci Technol 20:201–230. https://doi.org/10.1080/10910344.2016.1165835

    Article  Google Scholar 

  26. Vignesh S, Mohan B, Muthuramalingam T, Karthikeyan S (2015) Evaluation of recast layer thickness of electrical discharge machined AISI 202 stainless steel with various pulse generators. Appl Mech Mater 766–767:518–522. https://doi.org/10.4028/www.scientific.net/AMM.766-767.518

    Article  Google Scholar 

  27. Kensei K, Katsushi F (2014) Crack-less electrical discharge machining of molybdenum with titanium electrode. Appl Mech Mater 510:101–105. https://doi.org/10.4028/www.scientific.net/AMM.510.101

    Article  Google Scholar 

  28. Mastud S, Singh RK, Samuel J, Joshi SS (2011) Comparative analysis of the process mechanics in micro electrical discharge machining and reverse micro EDM. Proc ASME 2011 Int Manuf Sci Eng Conf June 13-17, 2011, Corvallis, Oregon, USA 1–10

  29. Yang X, Guo J, Chen X, Kunieda M (2011) Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precis Eng 35:51–57. https://doi.org/10.1016/j.precisioneng.2010.09.005

    Article  Google Scholar 

  30. Sarkar PS, Ray NK, Pal MK, Baribaddala R, Agrawal A, Kashyap Y, Sinha A, Gadkari SC (2017) Development of X-ray CCD camera based X-ray micro-CT system. Rev Sci Instrum 88:023702. https://doi.org/10.1063/1.4975376

    Article  Google Scholar 

  31. Mildenberger P, Eichelberg M, Martin E (2002) Introduction to the DICOM standard. Eur Radiol 12:920–927

    Article  Google Scholar 

  32. McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL, (2001) Medical image processing, analysis and visualization in clinical research. In: Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001. pp 381–386

  33. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

    Article  Google Scholar 

  34. Wang J, Wang YG, Zhao FL (2009) Simulation of debris movement in micro electrical discharge machining of deep holes. Mater Sci Forum 626–627:267–272. https://doi.org/10.4028/www.scientific.net/MSF.626-627.267

    Article  Google Scholar 

Download references

Acknowledgments

T. Roy is thankful to Prof. R. Mote for allowing the use of SEM, EDS, and Zeta-20 Benchtop Profiler at IIT Bombay. T. Roy expresses his earnest gratefulness towards Mr. N.K. Ray, BARC, for helping out with XMCT characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Roy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, T., Sarkar, P. & Balasubramaniam, R. Non-destructive surface characterization of reverse micro-EDM-induced arrayed μ-features with varying aspect ratio. Int J Adv Manuf Technol 107, 2609–2622 (2020). https://doi.org/10.1007/s00170-020-05217-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05217-w

Keywords

Navigation