Skip to main content
Log in

Delayed cracking in hot stamping with hot trimming for ultra-high strength steel components

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hydrogen-induced delayed cracking in hot stamping with hot trimming for ultra-high strength steel components at various trimming temperatures was investigated. The trimming temperature of a heated quenchable sheet was adjusted by rapid cooling with the upper punch and die, and then, the sheet was trimmed and die-quenched. A cathode hydrogen charging test was performed to examine the occurrence of delayed cracking at trimmed edges, and then, tensile strength and total elongation of the hydrogen-charged specimen were measured from the tensile test. Below, a martensite transformation start temperature of 420 °C, the fracture surface and the tensile residual stress became large, and delayed cracking was caused on the fracture surfaces of the sheared edges. Although no delayed cracking of the hydrogen-charged specimen occurred above 420 °C, the tensile strength and total elongation were reduced by hydrogen embrittlement. The critical temperature of delayed cracking for a thin sheet having 1.0 mm in thickness rose to 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Mori K, Akita K, Abe Y (2007) Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press. Int J Mach Tools Manuf 47(2):321–325. https://doi.org/10.1016/j.ijmachtools.2006.03.013

    Article  Google Scholar 

  2. Abe Y, Ohmi T, Mori K, Masuda T (2014) Improvement of formability in deep drawing of ultra-high strength steel sheets by coating of die. J Mater Process Technol 214(9):1838–1843. https://doi.org/10.1016/j.jmatprotec.2014.03.023

    Article  Google Scholar 

  3. Åkerström P, Oldenburg M (2006) Austenite decomposition during press hardening of a boron steel—computer simulation and test. J Mater Process Technol 174(1–3):399–406. https://doi.org/10.1016/j.jmatprotec.2006.02.013

    Article  Google Scholar 

  4. Nakagawa Y, Mori K, Maeno T (2018) Springback-free mechanism in hot stamping of ultra-high-strength steel parts and deformation behaviour and quenchability for thin sheet. Int J Adv Manuf Technol 95(1–4):459–467. https://doi.org/10.1007/s00170-017-1203-3

    Article  Google Scholar 

  5. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210(15):2103–2118. https://doi.org/10.1016/j.jmatprotec.2010.07.019

    Article  Google Scholar 

  6. Mori K, Bariani PF, Behrens BA, Brosius A, Bruschi S, Maeno T, Merklein M, Yanagimoto J (2017) Hot stamping of ultra-high strength steel parts. CIRP Ann Manuf Technol 66(2):755–777. https://doi.org/10.1016/j.cirp.2017.05.007

    Article  Google Scholar 

  7. Tahir AFM, Aqida SN (2017) An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology. Opt Laser Technol 92:142–149. https://doi.org/10.1016/j.optlastec.2017.01.005

    Article  Google Scholar 

  8. Nothhaft K, Suh J, Golle M, Picas I, Casellas D, Volk W (2012) Shear cutting of press hardened steel: influence of punch chamfer on process forces, tool stresses and sheared edge qualities. Prod Eng Res Devel 6(4–5):413–420. https://doi.org/10.1007/s11740-012-0404-8

    Article  Google Scholar 

  9. Lara A, Picas I, Casellas D (2013) Effect of the cutting process on the fatigue behaviour of press hardened and high strength dual phase steels. J Mater Process Technol 213(11):1908–1919. https://doi.org/10.1016/j.jmatprotec.2013.05.003

    Article  Google Scholar 

  10. Jaafar H, Mori K, Abe Y, Nakanishi K (2016) Automatic centring with moving die for cold small clearance punching of die-quenched steel sheets. J Mater Process Technol 227:190–199. https://doi.org/10.1016/j.jmatprotec.2015.08.010

    Article  Google Scholar 

  11. Han X, Yang K, Ding Y, Tan S, Chen J (2016) Numerical and experimental investigations on mechanical trimming process for hot stamped ultra-high strength. J Mater Process Technol 234:158–168. https://doi.org/10.1016/j.jmatprotec.2016.03.025

    Article  Google Scholar 

  12. Komatsuzaki Y, Joo H, Yamada K (2008) Influence of yield strength levels on crack growth mode in delayed fracture of structural steels. Eng Fract Mech 75(3–4):551–559. https://doi.org/10.1016/j.engfracmech.2007.02.009

    Article  Google Scholar 

  13. Lee SJ, Ronevich JA, Krauss G, Matlock DK (2010) Hydrogen embrittlement of hardened low-carbon sheet steel. ISIJ Int 50(2):294–301. https://doi.org/10.2355/isijinternational.50.294

    Article  Google Scholar 

  14. Ronevich JA, Kim SK, Speer JG, Matlock DK (2012) Hydrogen effects on cathodically charged twinning-induced plasticity steel. Scr Mater 66(12):956–959. https://doi.org/10.1016/j.scriptamat.2011.12.012

    Article  Google Scholar 

  15. Takashima K, Yoshioka Y, Yokoyama K, Funakawa Y (2018) Hydrogen embrittlement behavior of ultra-high strength dual phase steel sheet under sustained tensile-loading test. ISIJ Int 58(1):173–178. https://doi.org/10.2355/isijinternational.ISIJINT-2017-315

    Article  Google Scholar 

  16. Yoshino M, Ohji Y, Takagi S, Hasegawa K (2014) Influence of sheared edge on hydrogen embrittlement resistance in an ultra-high strength steel sheet. ISIJ Int 54(6):1416–1425. https://doi.org/10.2355/isijinternational.54.1416

    Article  Google Scholar 

  17. Mori K, Abe Y, Sedoguchi K (2019) Delayed fracture in cold blanking of ultra-high strength steel sheets. CIRP Ann Manuf Technol 68(1):297–300. https://doi.org/10.1016/j.cirp.2019.04.111

    Article  Google Scholar 

  18. Zhang Y, Hui W, Zhao X, Wang C, Dong H (2018) Effects of hot stamping and tempering on hydrogen embrittlement of a low-carbon boron-alloyed steel. Materials 11(12):2507. https://doi.org/10.3390/ma11122507

    Article  Google Scholar 

  19. Casellas D, Parareda S, Frometa D, Martinez M, Laraf A, Pujante J (2019) Understanding and predicting the fatigue resistance of press hardened 22MnB5. Proc 7th CHS2, pp 211–218

  20. So H, Faßmann D, Hoffmann H, Golle R, Schaper M (2012) An investigation of the blanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process. J Mater Process Technol 212(2):437–449. https://doi.org/10.1016/j.jmatprotec.2011.10.006

    Article  Google Scholar 

  21. Hou H, Li H, He L (2018) Effect of technological parameters on microstructure and accuracy of B1500HS steel parts in the hot blanking. Int J Adv Manuf Technol 95(9–12):3275–3287. https://doi.org/10.1007/s00170-017-1361-3

    Article  Google Scholar 

  22. Choi HS, Kim BM, Kim DH, Ko DC (2014) Application of mechanical trimming to hot stamped 22MnB5 parts for energy saving. Int J Prec Eng Manuf 15(6):1087–1093. https://doi.org/10.1007/s12541-014-0441-7

    Article  Google Scholar 

  23. Liu H, Lei C (2015) Local heating-aided hot blanking of quenched ultra-high-strength steel BR1500HS. Int J Adv Manuf Technol 77(1–4):629–641. https://doi.org/10.1007/s00170-014-6479-y

    Article  Google Scholar 

  24. Kim D, Jeon YJ, Choi HS, Kang J, Kim YD, Heo YM, Kim JD, Won ST (2017) An investigation of the trimming of boron nitride steel (22MnB5) during the die-quenching process. Process Eng 207:1540–1545. https://doi.org/10.1016/j.proeng.2017.10.1075

    Article  Google Scholar 

  25. Matsuno T, Sekito Y, Sakurada E, Suzuki T, Kawasaki K, Suehiro M (2014) Resistance of hydrogen embrittlement on hot-sheared surface during die-quench process. ISIJ Int 54(10):369–2374. https://doi.org/10.2355/isijinternational.54.2369

    Article  Google Scholar 

  26. Matsuno T, Sekito Y, Kawasaki K (2016) Microstructure characterization of fine grains near hot-sheared surface formed during hot-stamping process. J Mater Process Technol 229:570–581. https://doi.org/10.1016/j.jmatprotec.2015.10.012

    Article  Google Scholar 

  27. Mori K, Maeno T, Maruo Y (2012) Punching of small hole of die-quenched steel sheets using local resistance heating. CIRP Ann Manuf Technol 61(1):255–258. https://doi.org/10.1016/j.cirp.2012.03.124

    Article  Google Scholar 

  28. Nakagawa Y, Mori K, Maeno T (2016) Prevention of local thinning and springback in hot stamping of thin sheets. Key Eng Mater 716:487–493. https://doi.org/10.4028/www.scientific.net/KEM.716.487

    Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) of Number JP18H01749.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Nakagawa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, Y., Mori, Ki., Maeno, T. et al. Delayed cracking in hot stamping with hot trimming for ultra-high strength steel components. Int J Adv Manuf Technol 105, 5081–5090 (2019). https://doi.org/10.1007/s00170-019-04599-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04599-w

Keywords

Navigation