Skip to main content
Log in

Atmospheric pressure plasma jet and minimum quantity lubrication assisted micro-grinding of quenched GCr15

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

High-strength alloys have significant application values in aerospace industry due to their excellent mechanical properties. However, grinding of these alloys, which is generally used for precision machining, suffers from problems like high grinding temperature and poor surface quality. Having relatively lower grinding temperature and smaller grinding force, micro-grinding is a high-efficient manufacturing method for precision machining of difficult-to-cut materials. Nevertheless, the side effects induced by current composite grinding methods, such as temperature gradient and chatter marks, tend to be more obvious in the micro-machining process. Atmospheric pressure plasma jet (APPJ) can effectively improve metal surface wettability without changing surface structures. On the other hand, minimum quantity lubrication (MQL) can more efficiently cool and lubricate the grinding area. Here, we propose to induce APPJ and MQL cooling media into the micro-grinding area, and adjust the cooling and lubricating characteristics. Quenched GCr15 workpieces are machined under five different conditions (dry micro-grinding, nitrogen jet assisted micro-grinding, APPJ assisted micro-grinding, MQL assisted micro-grinding, and APPJ+MQL assisted micro-grinding), and grinding temperature, grinding force, surface roughness, and surface morphology of workpieces in each group are investigated and analyzed. The results indicate that APPJ can reduce grinding force and that APPJ+MQL micro-grinding can obtain surfaces with much better surface quality. Tensile experiments demonstrate that APPJ can reduce material elongation rate and promote material fracture, which contributes to its positive effect on the micro-grinding process. The environmentally-friendly method is expected to have promising application potentials in machining of difficult-to-cut materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu G, Chan KC, Zhu LL, Sun LG, Lu J (2017) Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 545:80–83. https://doi.org/10.1038/nature21691

    Article  Google Scholar 

  2. Bowden D, Krysiak Y, Palatinus L, Tsivoulas D, Plana-Ruiz S, Sarakinou E, Kolb U, Stewart D, Preuss M (2018) A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications. Nat Commun 9:1374. https://doi.org/10.1038/s41467-018-03875-9

    Article  Google Scholar 

  3. Neumeier S, Freund LP, Göken M (2015) Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance. Scr Mater 109:104–107. https://doi.org/10.1016/j.scriptamat.2015.07.030

    Article  Google Scholar 

  4. Pollock TM (2016) Alloy design for aircraft engines. Nat Mater 15:809–815. https://doi.org/10.1038/nmat4709

    Article  Google Scholar 

  5. Cheng B, Kim YJ, Chou P (2016) Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding. Nucl Eng Technol 48:16–25. https://doi.org/10.1016/j.net.2015.12.003

    Article  Google Scholar 

  6. Jia DZ, Li CH, Zhang YB, Yang M, Wang YG, Guo SM, Cao HJ (2017) Specific energy and surface roughness of minimum quantity lubrication grinding Ni-based alloy with mixed vegetable oil-based nanofluids. Precis Eng 50:248–262. https://doi.org/10.1016/j.precisioneng.2017.05.012

    Article  Google Scholar 

  7. Dai CW, Ding WF, Zhu YJ, Xu JH, Yu HW (2018) Grinding temperature and power consumption in high speed grinding of Inconel 718 nickel-based superalloy with a vitrified CBN wheel. Precis Eng 52:192–200. https://doi.org/10.1016/j.precisioneng.2017.12.005

    Article  Google Scholar 

  8. Guo SM, Li CH, Zhang YB, Wang YG, Li BK, Yang M, Zhang XP, Liu GT (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140:1060–1076. https://doi.org/10.1016/j.jclepro.2016.10.073

    Article  Google Scholar 

  9. Zhang YB, Li CH, Jia DZ, Zhang DK, Zhang XW (2015) Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940. https://doi.org/10.1016/j.jclepro.2014.10.027

    Article  Google Scholar 

  10. Mao C, Zhou X, Yin LR, Zhang MJ, Tang K, Zhang J (2016) Investigation of the flow field for a double-outlet nozzle during minimum quantity lubrication grinding. Int J Adv Manuf Technol 85:291–298. https://doi.org/10.1007/s00170-015-7896-2

    Article  Google Scholar 

  11. Balan ASS, Vijayaraghavan L, Krishnamurthy R, Kuppan P, Oyyaravelu R (2016) An experimental assessment on the performance of different lubrication techniques in grinding of Inconel 751. J Adv Res 7:709–718. https://doi.org/10.1016/j.jare.2016.08.002

    Article  Google Scholar 

  12. Nguyen T, Zarudi I, Zhang LC (2007) Grinding-hardening with liquid nitrogen: mechanisms and technology. Int J Mach Tool Manuf 47:97–106. https://doi.org/10.1016/j.ijmachtools.2006.02.010

    Article  Google Scholar 

  13. Guo B, Zhao QL (2017) Ultrasonic vibration assisted grinding of hard and brittle linear micro-structured surfaces. Precis Eng 48:98–106. https://doi.org/10.1016/j.precisioneng.2016.11.009

    Article  Google Scholar 

  14. Zhao QL, Sun ZY, Guo B (2016) Material removal mechanism in ultrasonic vibration assisted polishing of micro cylindrical surface on SiC. Int J Mach Tool Manuf 103:28–39. https://doi.org/10.1016/j.ijmachtools.2016.01.003

    Article  Google Scholar 

  15. Chen JB, Fang QH, Wang CC, Du JK, Liu F (2016) Theoretical study on brittle-ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials. Precis Eng 46:104–117. https://doi.org/10.1016/j.precisioneng.2016.04.005

    Article  Google Scholar 

  16. Cameron A, Bauer R, Warkentin A (2010) An investigation of the effects of wheel-cleaning parameters in creep-feed grinding. Int J Mach Tool Manuf 50:126–130. https://doi.org/. https://doi.org/10.1016/j.ijmachtools.2009.08.008

    Article  Google Scholar 

  17. Hood R, Cooper P, Aspinwall DK, Soo SL, Lee DS (2015) Creep feed grinding of γ-tial using single layer electroplated diamond superabrasive wheels. CIRP J Manuf Sci Technol 11:36–44. https://doi.org/10.1016/j.cirpj.2015.07.001

    Article  Google Scholar 

  18. Bhaduri D, Soo SL, Aspinwall DK, Novovic D, Bohr S, Harden P, Webster JA (2017) Ultrasonic assisted creep feed grinding of gamma titanium aluminide using conventional and superabrasive wheels. CIRP Ann-Manuf Technol 66:341–344. https://doi.org/10.1016/j.cirp.2017.04.085

    Article  Google Scholar 

  19. Shih HR, Shu KM (2008) A study of electrical discharge grinding using a rotary disk electrode. Int J Adv Manuf Technol 38:59–67. https://doi.org/10.1007/s00170-007-1068-y

    Article  Google Scholar 

  20. Yin QF, Wang XQ, Wang P, Qian ZQ, Lin Z, Zhang YB (2016) Fabrication of micro rod electrode by electrical discharge grinding using two block electrodes. J Mater Process Tech 234:143–149. https://doi.org/10.1016/j.jmatprotec.2016.03.023

    Article  Google Scholar 

  21. Cheng J, Gong YD (2014) Experimental study of surface generation and force modeling in micro-grinding of single crystal silicon considering crystallographic effects. Int J Mach Tool Manuf 77:1–15. https://doi.org/10.1016/j.ijmachtools.2013.10.003

    Article  Google Scholar 

  22. Kadivar M, Azarhoushang B, Shamray S, Krajnik P (2018) The effect of dressing parameters on micro-grinding of titanium alloy. Precis Eng 51:176–185. https://doi.org/10.1016/j.precisioneng.2017.08.008

    Article  Google Scholar 

  23. Chavoshi SZ, Luo XC (2015) Hybrid micro-machining processes: a review. Precis Eng 41:1–23. https://doi.org/10.1016/j.precisioneng.2015.03.001

    Article  Google Scholar 

  24. Lee PH, Lee SW (2011) Experimental characterization of micro-grinding process using compressed chilly air. Int J Mach Tool Manuf 51:201–209. https://doi.org/10.1016/j.ijmachtools.2010.11.010

    Article  Google Scholar 

  25. Kubiak KJ, Wilson MCT, Mathia TG, Carval P (2011) Wettability versus roughness of engineering surfaces. Wear 271:523–528. https://doi.org/10.1016/j.wear.2010.03.029

    Article  Google Scholar 

  26. Chen FZ, Liu JY, Cui Y, Huang S, Song JL, Sun J, Xu WJ, Liu X (2016) Stability of plasma treated superhydrophobic surfaces under different ambient conditions. J Colloid Interf Sci 470:221–228. https://doi.org/10.1016/j.jcis.2016.02.058

    Article  Google Scholar 

  27. Liu X, Chen FZ, Huang S, Yang XL, Lu Y, Zhou WL, Xu WJ (2015) Characteristic and application study of cold atmospheric-pressure nitrogen plasma jet. IEEE Trans Plasma Sci 43:1959–1968. https://doi.org/10.1109/TPS.2015.2427852

    Article  Google Scholar 

  28. Liu JY, Song JL, Wang GS, Chen FZ, Liu S, Yang XL, Sun J, Zheng HX, Huang L, Jin ZJ, Liu X (2018) Maskless hydrophilic patterning of the superhydrophobic aluminum surface by an atmospheric pressure microplasma jet for water adhesion controlling. ACS Appl Mater Interfaces 10:7497–7503. https://doi.org/10.1021/acsami.7b19431

    Article  Google Scholar 

  29. Katahira K, Ohmori H, Takesue S, Komotori J, Yamazaki K (2015) Effect of atmospheric-pressure plasma jet on polycrystalline diamond micro-milling of silicon carbide. CIRP Ann-Manuf Technol 64:129–132. https://doi.org/10.1016/j.cirp.2015.04.097

    Article  Google Scholar 

  30. Bastawros AF, Chandra A, Poosarla PA (2015) Atmospheric pressure plasma enabled polishing of single crystal sapphire. CIRP Ann-Manuf Technol 64:515–518. https://doi.org/10.1016/j.cirp.2015.04.037

    Article  Google Scholar 

  31. Zhang YB, Li CH, Jia DZ, Li BK, Wang YG, Yang M, Hou YL, Zhang XW (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Tech 232:100–115. https://doi.org/10.1016/j.jmatprotec.2016.01.031

    Article  Google Scholar 

  32. Wang YG, Li CH, Zhang YB, Yang M, Li BK, Dong L, Wang J (2018) Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. Int J Precis Eng Manuf-Green Tech 5:327–339. https://doi.org/10.1007/s40684-018-0035-4

    Article  Google Scholar 

  33. Zhang XP, Li CH, Zhang YB, Wang YG, Li BK, Yang M, Guo SM, Liu GT, Zhang NQ (2017) Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precis Eng 47:532–545. https://doi.org/10.1016/j.precisioneng.2016.09.016

    Article  Google Scholar 

  34. Saberi A, Rahimi AR, Parsa H, Ashrafijou M, Rabiei F (2016) Improvement of surface grinding process performance of CK45 soft steel by minimum quantity lubrication (MQL) technique using compressed cold air jet from vortex tube. J Clean Prod 131:728–738. https://doi.org/10.1016/j.jclepro.2016.04.104

    Article  Google Scholar 

  35. Rabiei F, Rahimi AR, Hadad MJ, Ashrafijou M (2015) Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization. J Clean Prod 86:447–460. https://doi.org/10.1016/j.jclepro.2014.08.045

    Article  Google Scholar 

  36. Wang YG, Li CH, Zhang YB, Yang M, Li BK, Jia DZ, Hou YL, Mao C (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J Clean Prod 127:487–499. https://doi.org/10.1016/j.jclepro.2016.03.121

    Article  Google Scholar 

  37. Lee PH, Lee SW, Lim SH, Lee SH, Ko HS, Shin SW (2015) A study on thermal characteristics of micro-scale grinding process using nanofluid minimum quantity lubrication (MQL). Int J Precis Eng Manuf 16:1899–1909. https://doi.org/10.1007/s12541-015-0247-2

    Article  Google Scholar 

  38. Chaudhari A, Soh ZY, Wang H, Kumar AS (2018) Rehbinder effect in ultraprecision machining of ductile materials. Int J Mach Tool Manuf 133:47–60. https://doi.org/10.1016/j.ijmachtools.2018.05.009

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Basic Research Program of China (Grant No. 2015CB057304), National Natural Science Foundation of China (NSFC, Grant No. 51305060), and the Fundamental Research Funds for the Central Universities (DUT18JC19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1628 kb)

ESM 2

(MP4 10014 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, Y., Zhang, J. et al. Atmospheric pressure plasma jet and minimum quantity lubrication assisted micro-grinding of quenched GCr15. Int J Adv Manuf Technol 106, 191–199 (2020). https://doi.org/10.1007/s00170-019-04469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04469-5

Keywords

Navigation