Skip to main content
Log in

Atomistic simulation of diffusion bonding of dissimilar materials undergoing ultrasonic welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ultrasonic welding (UW) process offers the ability to create highly efficient solid-state joints for lightweight metal alloys with low power consumption. During the process, a distinct diffusion layer is observed at the joint interface that undergoes severe plastic deformation at elevated temperature. A hierarchical multiscale method is proposed in this study to predict the diffusion behavior of the UW process of dissimilar materials. The method combines molecular dynamics and classical diffusion theory to calculate the thickness of the diffusion layer at the welded interface. A molecular dynamics model is developed for the first time that considers the effect of transverse ultrasonic vibration to simulate the evolution of the diffusion layer. The effect of ultrasonic vibration at the atomic level is assumed to provide thermal energy at the joint interface and the mechanical movement of atoms. The influence of sinusoidal velocity change during ultrasonic vibration is incorporated by numerically time integrating the diffusivity at different ultrasonic velocity. The simulation result shows that the solid-state diffusivity depends on temperature, pressure, and transverse ultrasonic velocity. Higher temperature, pressure, and ultrasonic velocity result in higher diffusivity leading to larger diffusion layer thickness. This article provides a comprehensive review of the diffusion bonding behavior and its dependence on process variables. It also presents a numerical approach combining molecular dynamics and hierarchical multiscale calculation to predict the diffusion layer thickness for the UW process of dissimilar materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kazuhiro N, Masao U (2002) Needs and prospects of dissimilar metal joining and welding. J Japan Weld Soc 71:418–421. https://doi.org/10.2207/qjjws1943.71.418

    Article  Google Scholar 

  2. Martinsen K, Hu SJ, Carlson BE (2015) Joining of dissimilar materials. CIRP Ann - Manuf Technol 64:679–699. https://doi.org/10.1016/j.cirp.2015.05.006

    Article  Google Scholar 

  3. Lee SS, Kim T-H, Hu SJ et al (2013) Characterization of joint quality in ultrasonic welding of battery tabs. ASME J Manuf Sci Eng 135:021004. https://doi.org/10.1115/1.4023364

    Article  Google Scholar 

  4. Kicukov E, Gursel A (2015) Ultrasonic welding of dissimilar materials: a review. Period Eng Nat Sci 3:28–36. https://doi.org/10.21533/pen.v3i1.44

    Google Scholar 

  5. Li J, Han L, Zhong J (2008) Short-circuit diffusion of ultrasonic bonding interfaces in microelectronic packaging. Surf Interface Anal 40:953–957. https://doi.org/10.1002/sia.2840

    Article  Google Scholar 

  6. Zhao YY, Li D, Zhang YS (2013) Effect of welding energy on interface zone of Al–Cu ultrasonic welded joint. Sci Technol Weld Join 18:354–360. https://doi.org/10.1179/1362171813Y.0000000114

    Article  Google Scholar 

  7. Wu X, Liu T, Cai W (2015) Microstructure, welding mechanism, and failure of Al/Cu ultrasonic welds. SME J Manuf Process 20:321–331. https://doi.org/10.1016/j.jmapro.2015.06.002

    Article  Google Scholar 

  8. Yang Y, Janaki Ram GD, Stucker BE (2009) Bond formation and fiber embedment during ultrasonic consolidation. J Mater Process Technol 209:4915–4924. https://doi.org/10.1016/j.jmatprotec.2009.01.014

    Article  Google Scholar 

  9. Ginzburg S, Mitskevich A, Nosov Y (1967) Formation of the joint in ultrasonic welding. Weld Prod 13:45–47

    Google Scholar 

  10. Chang UI, Frisch J (1974) On optimization of some parameters in ultrasonic metal welding. Weld J 53:24–35

    Google Scholar 

  11. Lu Y, Song H, Taber GA, Foster DR, Daehn GS, Zhang W (2016) In-situ measurement of relative motion during ultrasonic spot welding of aluminum alloy using photonic Doppler velocimetry. J Mater Process Technol 231:431–440. https://doi.org/10.1016/j.jmatprotec.2016.01.006

    Article  Google Scholar 

  12. Fujii HT, Goto Y, Sato YS, Kokawa H (2016) Microstructure and lap shear strength of the weld interface in ultrasonic welding of Al alloy to stainless steel. Scr Mater 116:135–138. https://doi.org/10.1016/j.scriptamat.2016.02.004

    Article  Google Scholar 

  13. Zhang Z, Wang K, Li J, Yu Q, Cai W (2017) Investigation of interfacial layer for ultrasonic spot welded aluminum to copper joints. Sci Rep 7:12505. https://doi.org/10.1038/s41598-017-12164-2

    Article  Google Scholar 

  14. Yang JW, Cao B, He XC, Luo HS (2014) Microstructure evolution and mechanical properties of Cu–Al joints by ultrasonic welding. Sci Technol Weld Join 19:500–504. https://doi.org/10.1179/1362171814Y.0000000218

    Article  Google Scholar 

  15. Beyer W (1969) The bonding process in the ultrasonic welding of metals. Schweisstechnik 19:16–20

    Google Scholar 

  16. Watanabe T, Sakuyama H, Yanagisawa A (2009) Ultrasonic welding between mild steel sheet and Al–Mg alloy sheet. J Mater Process Technol 209:5475–5480. https://doi.org/10.1016/j.jmatprotec.2009.05.006

    Article  Google Scholar 

  17. Watanabe A, Yanagisawa T, Konuma S et al (1999) The effect of oxide film on the strength of an ultrasonically welded joint and welding process - study of the ultrasonic welding of dissimilar metals (2nd report). Weld Int 13:936–944. https://doi.org/10.1080/09507119909452077

    Article  Google Scholar 

  18. Xu L, Wang L, Chen Y-C, Robson JD, Prangnell PB (2016) Effect of interfacial reaction on the mechanical performance of steel to aluminum dissimilar ultrasonic spot welds. Metall Mater Trans A 47:334–346. https://doi.org/10.1007/s11661-015-3179-7

    Article  Google Scholar 

  19. Ren D, Zhao K, Pan M, Chang Y, Gang S, Zhao D (2017) Ultrasonic spot welding of magnesium alloy to titanium alloy. Scr Mater 126:58–62. https://doi.org/10.1016/j.scriptamat.2016.08.003

    Article  Google Scholar 

  20. Mielke SL, Troya D, Zhang S, Li JL, Xiao S, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390:413–420. https://doi.org/10.1016/j.cplett.2004.04.054

    Article  Google Scholar 

  21. Xiao S, Hou W (2006) Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites. Phys Rev B Condens Matter Mater Phys 73:1–7. https://doi.org/10.1103/PhysRevB.73.115406

    Google Scholar 

  22. Xiao S, Andersen DR, Han R, Hou W (2006) Studies of carbon nanotube-based oscillators using molecular dynamics. J Comput Theor Nanosci 3:142–147. https://doi.org/10.1166/jctn.2006.013

    Google Scholar 

  23. Xiao S, Hou W (2007) Studies of nanotube-based resonant oscillators through multiscale modeling and simulation. Phys Rev B Condens Matter Mater Phys 75:1–9. https://doi.org/10.1103/PhysRevB.75.125414

    Article  Google Scholar 

  24. Ghaffari MA, Zhang Y, Xiao SP (2017) Molecular dynamics modeling and simulation of lubricant between sliding solids. J Micromechanics Mol Phys 2:1750009. https://doi.org/10.1142/S2424913017500096

    Article  Google Scholar 

  25. Chen SY, Wu ZW, Liu KX, Li XJ, Luo N, Lu GX (2013) Atomic diffusion behavior in Cu-Al explosive welding process. J Appl Phys 113:044901. https://doi.org/10.1063/1.4775788

    Article  Google Scholar 

  26. Konovalenko IS, Konovalenko IS, Psakhie SG (2017) Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding. 020093:020092. https://doi.org/10.1063/1.5013773

  27. Ye YY, Biswas R, Morris JR, Bastawros A, Chandra A (2003) Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology 14:390–396. https://doi.org/10.1088/0957-4484/14/3/307

    Article  Google Scholar 

  28. Li C, Li D, Tao X, Chen H, Ouyang Y (2014) Molecular dynamics simulation of diffusion bonding of Al–Cu interface. Model Simul Mater Sci Eng 22:065013. https://doi.org/10.1088/0965-0393/22/6/065013

    Article  Google Scholar 

  29. Chen SD, Soh AK, Ke FJ (2005) Molecular dynamics modeling of diffusion bonding. Scr Mater 52:1135–1140. https://doi.org/10.1016/j.scriptamat.2005.02.004

    Article  Google Scholar 

  30. Chen S, Ke F, Zhou M, Bai Y (2007) Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al. Acta Mater 55:3169–3175. https://doi.org/10.1016/j.actamat.2006.12.040

    Article  Google Scholar 

  31. Zhang Q, Lai WS, Liu BX (1999) Molecular dynamics study of solid state interfacial reaction in the Ni-Mo system. J Comput Mater Des 6:103–116. https://doi.org/10.1023/A:100874620

    Article  Google Scholar 

  32. Lee SS, Kim T-H, Hu SJ et al (2015) Analysis of weld formation in multilayer ultrasonic metal welding using high-speed images. ASME J Manuf Sci Eng 137:031016. https://doi.org/10.1115/1.4029787

    Article  Google Scholar 

  33. Shen N (2018) Microstructure prediction of severe plastic deformation manufacturing processes for metals. University of Iowa

  34. Shen N, Samanta A, Ding H, Cai WW (2016) Simulating microstructure evolution of battery tabs during ultrasonic welding. SME J Manuf Process 23:306–314. https://doi.org/10.1016/j.jmapro.2016.04.005

    Article  Google Scholar 

  35. Zhao J, Li H, Choi H, Cai W, Abell JA, Li X (2013) Insertable thin film thermocouples for in situ transient temperature monitoring in ultrasonic metal welding of battery tabs. SME J Manuf Process 15:136–140. https://doi.org/10.1016/j.jmapro.2012.10.002

    Article  Google Scholar 

  36. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  37. Cai J, Ye YY (1996) Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys Rev B 54:8398–8410. https://doi.org/10.1103/PhysRevB.54.8398

    Article  Google Scholar 

  38. Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519. https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  39. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  Google Scholar 

  40. Parrinello M, Rahman A, R a PM (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45:1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196

    Article  Google Scholar 

  41. Mehrer H (2007) Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer, Berlin Heidelberg

    Book  Google Scholar 

  42. Taneja D, Volpert M, Hodaj F (2018) On the initial stages of solid state reactions in Ni/Sn-Ag solder system at 150–210 °C. J Alloys Compd 742:199–211. https://doi.org/10.1016/j.jallcom.2018.01.253

    Article  Google Scholar 

  43. Bai L, Xue W, Li Y, Liu X, Li Y, Sun J (2018) The interfacial behaviours of all-solid-state lithium ion batteries. Ceram Int 44:7319–7328. https://doi.org/10.1016/j.ceramint.2018.01.190

    Article  Google Scholar 

  44. Hou W, Xiao S (2007) Mechanical behaviors of carbon nanotubes with randomly located vacancy defects. J Nanosci Nanotechnol 7:4478–4485. https://doi.org/10.1166/jnn.2007.862

    Article  Google Scholar 

  45. Soyarslan C, Bargmann S, Pradas M, Weissmüller J (2018) 3D stochastic bicontinuous microstructures: generation, topology and elasticity. Acta Mater 149:326–340. https://doi.org/10.1016/j.actamat.2018.01.005

    Article  Google Scholar 

  46. Li H, Choi H, Ma C, Zhao J, Jiang H, Cai W, Abell JA, Li X (2013) Transient temperature and heat flux measurement in ultrasonic joining of battery tabs using thin-film microsensors. ASME J Manuf Sci Eng 135:051015. https://doi.org/10.1115/1.4024816

    Article  Google Scholar 

  47. Chen KK, Zhang YS (2015) Numerical analysis of temperature distribution during ultrasonic welding process for dissimilar automotive alloys. Sci Technol Weld Join 20:522–531. https://doi.org/10.1179/1362171815Y.0000000022

    Article  Google Scholar 

Download references

Funding

The authors would like to the financial support of the National Science Foundation under Grant Number CMMI-1537512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Ding.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, A., Xiao, S., Shen, N. et al. Atomistic simulation of diffusion bonding of dissimilar materials undergoing ultrasonic welding. Int J Adv Manuf Technol 103, 879–890 (2019). https://doi.org/10.1007/s00170-019-03582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03582-9

Keywords

Navigation