Skip to main content
Log in

Investigation on the thermal behavior of an aerostatic spindle system considering multi-physics coupling effect

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The thermal behavior of aerostatic spindles is significantly affected by the multi-physics coupling phenomenon between the air film, the solid structure, and the temperature field of the spindle system. In this study, a novel simulation modeling method is proposed to investigate the multi-physics coupling phenomenon of the aerostatic spindle system, by which the elastic deformation and the thermal deformation of solid parts can be considered simultaneously to predict the thermal behavior of the aerostatic spindle. Besides, the variation in the performance of air bearing and the gravitational eccentricity of the shaft during the temperature rise process are also obtained, which provides an insight into the multi-physics coupling phenomenon of the aerostatic spindle. Finally, the temperature raise process of the aerostatic spindle system is measured to validate the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryan J (1990) International status of thermal error research (1990). CIRP Ann Manuf Technol 39(2):645–656

    Article  Google Scholar 

  2. Weck M, McKeown P, Bonse R, Herbst U (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann Manuf Technol 44(2):589–598

    Article  Google Scholar 

  3. Liang R, Ye W, Zhang H, Yang Q (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9–12):1167–1176

    Google Scholar 

  4. Hsieh KH, Chen TR, Chang P, Tang CH (2013) Thermal growth measurement and compensation for integrated spindles. Int J Adv Manuf Technol 64(5–8):889–901

    Article  Google Scholar 

  5. Zhang C, Gao F, Che Y, Li Y (2015) Thermal error modeling of multisource information fusion in machine tools. Int J Adv Manuf Technol 80(5–8):791–799

    Article  Google Scholar 

  6. Sharma AK, Tiwari AK, Dixit AR (2018) Prediction of temperature distribution over cutting tool with alumina-MWCNT hybrid nanofluid using computational fluid dynamics (CFD) analysis. Int J Adv Manuf Technol 97(1–4):427–439

    Article  Google Scholar 

  7. Liang Y, Su H, Lu L, Chen W, Sun Y, Zhang P (2015) Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method. Int J Adv Manuf Technol 76(1–4):635–645

    Article  Google Scholar 

  8. Sun L, Ren M, Hong H, Yin Y (2017) Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool. Int J Adv Manuf Technol 88(5–8):1267–1277

    Article  Google Scholar 

  9. Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann Manuf Technol 59(2):781–802

    Article  Google Scholar 

  10. Liu Z, Pan M, Zhang A, Zhao Y, Yang Y, Ma C (2015) Thermal characteristic analysis of high-speed motorized spindle system based on thermal contact resistance and thermal-conduction resistance. Int J Adv Manuf Technol 76(9–12):1913–1926

    Article  Google Scholar 

  11. Ma C, Mei X, Yang J, Zhao L, Shi H (2015) Thermal characteristics analysis and experimental study on the high-speed spindle system. Int J Adv Manuf Technol 79(1–4):469–489

    Article  Google Scholar 

  12. Gao Q, Lu L, Chen W, Wang G (2018) Influence of air-induced vibration of aerostatic bearing on the machined surface quality in ultra-precision flycutting. Proc IMechE Part J: J Eng Tribol 232(2):117–125

    Article  Google Scholar 

  13. Gao Q, Lu L, Chen W, Wang G (2017) The influence of oil source pressure fluctuation on the waviness error of potassium dihydrogen phosphate in ultra-precision machining. Proc IMechE Part B: J Eng Manuf 233:486–493. https://doi.org/10.1177/0954405417738283

    Article  Google Scholar 

  14. Li T, Ding H, Cheng K (2013) Dynamics design and analysis of direct-drive aerostatic slideways in a multi-physics simulation environment. Int J Mech Eng Educ 41(4):315–328

    Article  Google Scholar 

  15. Dikmen E, Peter JM, Ronald GKMA (2010) Influence of multiphysical effects on the dynamics of high speed minirotors—part I: theory. J Vib Acoust 132(3):031010

    Article  Google Scholar 

  16. Su H, Lu L, Liang Y, Zhang Q, Sun Y (2014) Thermal analysis of the hydrostatic spindle system by the finite volume element method. Int J Adv Manuf Technol 71(9–12):1949–1959

    Article  Google Scholar 

  17. Liu T, Gao W, Tian Y, Mao K, Pan G, Zhang D (2015) Thermal simulation modeling of a hydrostatic machine feed platform. Int J Adv Manuf Technol 79(9–12):1581–1595

    Article  Google Scholar 

  18. Gao S, Cheng K, Ding H, Fu H (2016) Multiphysics-based design and analysis of the high-speed aerostatic spindle with application to micro-milling. Proc IMechE Part J: J Eng Tribol 230(7):852–871

    Article  Google Scholar 

  19. Gao Q, Lu L, Chen W, Chen G, Wang G (2017) A novel modeling method to investigate the performance of aerostatic spindle considering the fluid-structure interaction. Tribol Int 115:461–469

    Article  Google Scholar 

  20. Gao Q, Lu L, Chen W, Wang G (2017) Optimal design of an annular thrust air bearing using parametric computational fluid dynamics model and genetic algorithms. Proc IMechE Part J: J Eng Tribol 232(10):1203–1214

  21. Lu L, Chen W, Wu B, Gao Q, Wu Q (2016) Optimal design of an aerostatic spindle based on fluid-structure interaction method and its verification. Proc IMechE Part J: J Eng Tribol 230(6):690–696

    Article  Google Scholar 

  22. Lu L, Chen W, Yu N, Wang Z, Chen G (2016) Aerostatic thrust bearing performances analysis considering the fluid-structure coupling effect. Proc IMechE Part J: J Eng Tribol 230(12):1588–1596

    Article  Google Scholar 

  23. Lu L, Gao Q, Chen W, Liu L, Wang G (2017) Investigation on the fluid–structure interaction effect of an aerostatic spindle and the influence of structural dimensions on its performance. Proc IMechE Part J: J Eng Tribol 231(11):1434–1440

    Article  Google Scholar 

  24. Deng C, An C, Wei B, Miao J (2018) Investigation on the influence of aerostatic pressure upon surface generation in flycutting. Proc IMechE Part B: J Eng Manuf 233:1136–1143. https://doi.org/10.1177/0954405418780164

    Article  Google Scholar 

  25. ANSYS Inc. ANSYS help version 17.0, 2017

  26. ANSYS Inc. FLUENT user’s guide, 2017

  27. Zhang H (2010) Iron losses and transient temperature field of permanent magnetic synchronous motor. Dissertation, Harbin institute of technology

  28. Tu J (2009) Computational fluid dynamics-a practical approach. Butterworth-Heinemann, Oxford

    Google Scholar 

  29. Holman JP (2008) Heat transfer. McGraw-Hill, New York

    Google Scholar 

  30. Dai G (1999) Heat transfer theory. Higher Education Press, Beijing, pp 154–155

    Google Scholar 

  31. Cardone G, Astarita T, Carlomagno GM (1997) Heat transfer measurements on a rotating disk. International Journal of Rotating Machinery 3(1):1–9

    Article  Google Scholar 

  32. Wagner C (1948) Heat transfer from a rotating disk to ambient air. J Appl Phys 19(9):837–839

    Article  Google Scholar 

  33. Min X, Shuyun J, Ying C (2007) An improved thermal model for machine tool bearings. Int J Mach Tools Manuf 47(1):53–62

    Article  Google Scholar 

  34. Majumdar A, Bhushan B (1991) Fractal model of elastic-plastic contact between rough surfaces. J Tribol 113(1):1–11

    Article  Google Scholar 

Download references

Funding

The authors deeply acknowledge the financial support from the National Science and Technology Program: Research and Development of High Stiffness Nano-drive Systems of Ultra-precision Machine Tools (2015DFA70630) and the Doctoral Student Short-Term Visiting Research Project of Harbin Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Lu, L., Zhang, R. et al. Investigation on the thermal behavior of an aerostatic spindle system considering multi-physics coupling effect. Int J Adv Manuf Technol 102, 3813–3823 (2019). https://doi.org/10.1007/s00170-019-03509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03509-4

Keywords

Navigation