Skip to main content
Log in

Cutting fluid emissions in grinding processes: influence of process parameters on particle size and mass concentration

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Grinding processes are applied to achieve a superior workpiece surface quality and accuracy. In order to fulfill these requirements efficiently, the use of cutting fluid is indispensable. However, during the grinding process, the application of cutting fluids leads to the formation of cutting fluid emissions. These emissions can have a negative impact on the workers’ health, can be explosive, and can result into the drag-out of cutting fluid. This paper presents an experimental approach to evaluate the influence of process parameters on the formation of emissions and the particle size. It reveals a linear influence of cutting speed and cutting fluid volume flow rate as well as a significant impact of the material removal process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herrmann C, Madanchi N, Winter M, Öhlschläger G, Greßmann A, Zettl E, Schwengers K, Lange U (2017) Ökologische und ökonomische Bewertung des Ressourcenaufwands - Wassermischbare Kühlschmierstoffe. VDI Zentrum Ressourceneffizienz GmbH, Berlin

    Google Scholar 

  2. Deutsche Gesetzliche Unfallversichung e.V (2011) Tätigkeiten mit Kühlschmierstoffen, Deutsch Gesetzliche Unfallversichung e.V. Medienproduktion, Berlin

    Google Scholar 

  3. Winter M (2016) Eco-efficiency of grinding processes and systems. Dr.-Ing. Dissertation. Technische Universität Braunschweig, Springer International Publishing

  4. Petuelli G (2002) Simulation des Kühlschmierstoffkreislaufs zur Optimierung einer umwelt- und ressourcenschonenden Produktionstechnik. Shaker Verlag GmbH, Aachen

    Google Scholar 

  5. Frost T (2008) Drehen mit geschlossenem Innenkühlsystem. Berichte aus dem Produktionstechnischen Zentrum Berlin. Hrsg.: Uhlmann, E. Dr.-Ing. Dissertation. Technische Universität Berlin. Stuttgart: Fraunhofer IRB

  6. Klocke F, König W (2011) Manufacturing processes 1 – cutting. Springer Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  7. Denkena B, Tönshoff H (2011) Spanen – Grundlagen. Springer Verlag, Wiesbaden

    Book  Google Scholar 

  8. Li K, Aghazadeh F, Hatipkarasulu RT (2003) Health risks from exposure to metal-working fluids in machining and grinding operations. Int J Occup Saf Ergon 1(/9):75–95

    Article  Google Scholar 

  9. DIN 51385 (2013) Schmierstoffe – Bearbeitungsmedien für die Umformung und Zerspanung von Werkstoffen. Deutsches Institut für Normung e.V. German. Beuth Verlag GmbH, Berlin

    Google Scholar 

  10. Debnath S, Reddy MM, Sok Yi Q (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47

    Article  Google Scholar 

  11. American meteorological society (2012) Particle. http://glossary.ametsoc.org/wiki/Particle. Accessed 16 Mar 2018

  12. Lazaridis M, Colbeck I (2014) Aerosol science: technology and applications. Wiley, Chichester

    Google Scholar 

  13. Bell D, Chou J, Nowag L, Liang Y (1999) Modeling the environment impacts of cutting fluid. Tribol Trans 42/1:168–173

    Article  Google Scholar 

  14. Gunter K, Sutherland J (1999) An experimental investigation into the effect of process conditions on the mass concentration of cutting fluid mist in turning. J Clean Prod 7(5):341–350

    Article  Google Scholar 

  15. Madanchi N, Winter M, Herrmann C (2015) Cutting fluid drag-out and exhaust air in grinding processes: influence on the eco-efficiency. In: Proceedings of the 22th CIRP conference on life cycle engineering, The University of New South Wales, Sydney, Australia, 329–334

  16. Technische Regeln für Gefahrstoffe (TRGS) 900 (2000) Arbeitsplatzgrenzwerte in der Luft am Arbeitsplatz „Luftgrenzwerte”. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Ausschuss für Gefahrstoffe, Dortmund

  17. Bannert P, Michels P (2007) Lufttechnische Maßnahmen bei Tätigkeiten mit Kühlschmierstoffen, Berufsgenossenschaft der Feinmechanik und Elektrotechnik, Köln

  18. Technische Regeln für Gefahrstoffe (TRGS) 900 (2006) Arbeitsplatzgrenzwerte in der Luft am Arbeitsplatz „Luftgrenzwerte”. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Ausschuss für Gefahrstoffe, Dortmund

  19. United States Occupational Safety and Health Administration (1989) 1910.1000 Table Z-1: table Z-1 limit for air contaminants, United States Department of Labor

  20. Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W (1986) Deposition of particles in the human respiratory tract in the size range of 0.005 – 15 μm. J Aerosol Sci 17:811–825

    Article  Google Scholar 

  21. Nesaratnam S, Taherzadeh S (2004) Air quality management. Wiley, Chichester

    Google Scholar 

  22. International Commission for Radiological Protection (ICRP) (1994) ICRP model: human respiratory tract model for radiological protection. ICRP Publication 66:1–482

    Google Scholar 

  23. Peters A, Wichmann E, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Madanchi.

Electronic supplementary material

ESM 1

(PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madanchi, N., Leiden, A., Winter, M. et al. Cutting fluid emissions in grinding processes: influence of process parameters on particle size and mass concentration. Int J Adv Manuf Technol 101, 773–783 (2019). https://doi.org/10.1007/s00170-018-2934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2934-5

Keywords

Navigation