Skip to main content
Log in

Scatterometry for optimization of injection molded nanostructures at the fabrication line

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A compact scatterometer has been build and tested at a production facility. The scatterometer is used to characterize the feature dimensions of injection molded polymer nanostructures and give on-site direct feedback to the operator on the produced quality. In this way, the injection molding process parameters are iteratively improved until accurate replication of the nanostructures has been achieved. The tests are carried out on 2-in. diameter samples with nearly 100 nanostructured areas, consisting of diffractive line gratings with different periods and orientations. It is found that different nanostructures require different process parameters to reach high replication fidelity. Scatterometry measurements are very fast, and will therefore not present a bottleneck when used for quality assurance during production. We furthermore examine the spatial variations in the replicated structures within molded polymer discs using an imaging scatterometer. We demonstrate that the imaging scatterometer is capable of characterizing the entire sample simultaneously, in contrast to the compact scatterometer which performs a local analysis based on measurements on the individual grating regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biró LP, Vigneron JP (2011) Photonic nanoarchitectures in butterflies and beetles: valuable sources for section 2.3 bioinspiration. Laser Photonics Rev 5:27–51. https://doi.org/10.1002/lpor.200900018

    Article  Google Scholar 

  2. Wang Z, Xu L, Wu X, Chen J (2018) A designable surface via the micro-molding process. Microsyst Nanoeng 4:17099. https://doi.org/10.1038/micronano.2017.99

    Article  Google Scholar 

  3. Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14:4499–4504. https://doi.org/10.1021/nl5014986

    Article  Google Scholar 

  4. Johansen VE, Thamdrup LH, Smistrup K, Nielsen T, Sigmund O, Vukusic P (2015) Designing visual appearance using a structured surface. Optica 2:239. https://doi.org/10.1364/OPTICA.2.000239

    Article  Google Scholar 

  5. Roberts AS, Pors A, Albrektsen O, Bozhevolnyi SI (2014) Subwavelength plasmonic color printing protected for ambient use. Nano Lett 14:783–787. https://doi.org/10.1021/nl404129n

    Article  Google Scholar 

  6. Jiang H, Rezaei M, Abdolahi M, Kaminska B (2017) Solvent-free optical recording of structural colours on pre-imprinted photocrosslinkable nanostructures. Nano Futur 1:025001. https://doi.org/10.1088/2399-1984/aa7986

    Article  Google Scholar 

  7. Christiansen AB, Clausen JS, Mortensen NA, Kristensen A (2014) Injection moulding antireflective nanostructures. Microelectron Eng 121:47–50. https://doi.org/10.1016/j.mee.2014.03.027

    Article  Google Scholar 

  8. Matschuk M, Larsen NB (2013) Injection molding of high aspect ratio sub-100 nm nanostructures. J Micromechanics Microengineering 23:025003. https://doi.org/10.1088/0960-1317/23/2/025003

    Article  Google Scholar 

  9. Murthy S, Matschuk M, Huang Q, Mandsberg NK, Feidenhans’l NA, Johansen P, Christensen L, Pranov H, Kofod G, Pedersen HC, Hassager O, Taboryski R (2016) Fabrication of nanostructures by roll-to-roll extrusion coating: roll-to-roll fabrication of nanostructures. Adv Eng Mater 18:484–489. https://doi.org/10.1002/adem.201500347

    Article  Google Scholar 

  10. Zhang C, Yi P, Peng L, Lai X, Chen J, Huang M, Ni J (2017) Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci Rep 7:39814. https://doi.org/10.1038/srep39814

    Article  Google Scholar 

  11. Jiang H, Kaminska B (2018) Scalable inkjet-based structural color printing by molding transparent gratings on multilayer nanostructured surfaces. ACS Nano. https://doi.org/10.1021/acsnano.7b08580

    Article  Google Scholar 

  12. T.A. Osswald, L.-S. Turng, P.J. Gramann, eds., Injection molding handbook, 2nd ed., Updated 2nd ed, Carl Hanser Publishers; Hanser Gardner Publications, Munich : Cincinnati, 2008

  13. Madsen MH, Hansen P-E (2016) Scatterometry—fast and robust measurements of nano-textured surfaces. Surf Topogr Metrol Prop 4:023003. https://doi.org/10.1088/2051-672X/4/2/023003

    Article  Google Scholar 

  14. C. Raymond, Overview of scatterometry applications in high volume silicon manufacturing, in: AIP, 2005: pp. 394–402. doi:https://doi.org/10.1063/1.2062993

  15. Madsen JS, Thamdrup LH, Czolkos I, Hansen P-E, Johansson A, Garnaes J, Nygard J, Madsen MH (2017) In-line characterization of nanostructured mass-produced polymer components using scatterometry. J Micromechanics Microengineering 27:085004. https://doi.org/10.1088/1361-6439/aa7a3a

    Article  Google Scholar 

  16. Madsen MH, Hansen P-E (2016) Imaging scatterometry for flexible measurements of patterned areas. Opt Express 24:1109–1117. https://doi.org/10.1364/OE.24.001109

    Article  Google Scholar 

  17. Madsen MH, Hansen P-E, Zalkovskij M, Karamehmedović M, Garnæs J (2015) Fast characterization of moving samples with nano-textured surfaces. Optica. 2:301. https://doi.org/10.1364/OPTICA.2.000301

    Article  Google Scholar 

  18. Hench JJ, Strakovs Z (2008) The RCWA method-a case study with open questions and perspectives of algebraic computations. Electron Trans Numer Anal 31:331–357

    MathSciNet  MATH  Google Scholar 

  19. Moharam MG, Gaylord TK, Pommet DA, Grann EB (1995) Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 12:1077. https://doi.org/10.1364/JOSAA.12.001077

    Article  Google Scholar 

  20. Madsen JS, Hansen PE, Boher P, Dwarakanath D, Jørgensen JF, Bilenberg B, Nygård J, Madsen MH (2017) Study on microgratings using imaging, spectroscopic, and Fourier lens scatterometry. J. Micro Nano-Manuf 5:031005. https://doi.org/10.1115/1.4036889

    Article  Google Scholar 

  21. Niu X, Jakatdar N, Bao J, Spanos CJ (2001) Specular spectroscopic scatterometry. IEEE Trans Semicond Manuf 14:97–111

    Article  Google Scholar 

  22. A. Vaid, B.B. Yan, Y.T. Jiang, M. Kelling, C. Hartig, J. Allgair, P. Ebersbach, M. Sendelbach, N. Rana, A. Katnani, E. Mclellan, C. Archie, C. Bozdog, H. Kim, M. Sendler, S. Ng, B. Sherman, B. Brill, I. Turovets, R. Urensky, A holistic metrology approach: hybrid metrology utilizing scatterometry, CD-AFM, and CD-SEM, in: C.J. Raymond (Ed), 2011: p. 797103. doi:https://doi.org/10.1117/12.881632

  23. D. Wierzbicki, M. Wilińska, Liquid crystal tunable filters in detecting water pollution, in: Vilnius Gediminas Technical University Press “Technika” 2014, 2014. doi:https://doi.org/10.3846/enviro.2014.013

  24. M. Zalkovskij, L.H. Thamdrup, K. Smistrup, T. Andén, A.C. Johansson, N.J. Mikkelsen, M.H. Madsen, J. Garnæs, T.T. Kristiansen, M. Diemer, M. Døssing, D. Minzari, P.T. Tang, A. Kristensen, R. Taboryski, S. Essendrop, T. Nielsen, B. Bilenberg, Smart plastic functionalization by nanoimprint and injection molding, in: D.J. Resnick, C. Bencher (Eds), 2015: p. 94230T. doi:https://doi.org/10.1117/12.2085766

  25. Garnaes J, Kofod N, Kühle A, Nielsen C, Dirscherl K, Blunt L (2003) Calibration of step heights and roughness measurements with atomic force microscopes. Precis Eng 27:91–98. https://doi.org/10.1016/S0141-6359(02)00184-8

    Article  Google Scholar 

  26. M. Calaon, G. Tosello, H.N. Hansen, C. Ravn, A. Islam, Packing parameters effect on injection molding of polypropylene nanostructured surfaces, in: Proc. 70th Annu. Tech. Conf. Exhib., 2012

  27. 2013 ITRS, Int. technol. roadmap semicond (n.d.). http://www.itrs2.net/2013-itrs.html (accessed March 16, 2018)

Download references

Funding

The work presented has received funding from The Danish Agency for Institutions and Educational Grants, the Quantum Innovation Center, the Eurostars projects E9745-SuperLens and E8875-InFoScat, and the EMPIR programme co-financed by the Participating States and from the European Unions Horizon 2020 research and innovation programme through the project 14IND09 MetHPM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonas Skovlund Madsen or Poul Erik Hansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madsen, J.S., Jensen, S.A., Nakotte, L. et al. Scatterometry for optimization of injection molded nanostructures at the fabrication line. Int J Adv Manuf Technol 99, 2669–2676 (2018). https://doi.org/10.1007/s00170-018-2665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2665-7

Keywords

Navigation