Skip to main content

Advertisement

Log in

Experimental investigation of the mechanical performances of titanium cranial prostheses manufactured by super plastic forming and single-point incremental forming

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present work, sheet-forming processes, i.e. super plastic forming and single-point incremental forming, have been adopted for the manufacturing of custom prostheses, instead of subtractive and additive techniques that are time- and cost-consuming for a single-piece production. Regarding concerns of the material, three different titanium alloys were used: pure titanium and two grades of the alloy Ti-6Al-4V (the standard one and the extra low interstitial one). Since no standard protocol exists to assess the mechanical performance of cranial implants, an experimental procedure has been designed and used in this work for producing polymethylmethacrylate supports, on which the cranial prostheses were firmly connected and subjected to impact puncture tests (drop tests). An experimental campaign could thus be conducted to investigate the effect on the mechanical response of (a) the titanium alloy, (b) the initial blank thickness and (c) the manufacturing process. Drop tests, carried out according to the proposed procedure, have shown no failure of the prostheses, neither in the area of the impact nor in the anchoring region and have revealed that, irrespective of the adopted manufacturing process, which does not alter the material, the amount of energy absorbed by the implants is always larger than 70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pruitt LA, Chakravartula AM (2011) Mechanics of biomaterials: fundamental principles for implant design. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511977923

    Book  Google Scholar 

  2. Wazen RM, Currey JA, Guo H, Brunski JB, Helms JA, Nanci A (2013) Micromotion-induced strain fields influence early stages of repair at bone–implant interfaces. Acta Biomater 9:6663–6674. https://doi.org/10.1016/j.actbio.2013.01.014

    Article  Google Scholar 

  3. Castelan J, Schaeffer L, Daleffe A, Fritzen D, Salvaro V, Da Silva FP (2014) Manufacture of custom-made cranial implants from DICOM® images using 3D printing, CAD/CAM technology and incremental sheet forming. Rev Bras Eng Biomed 30:265–273. https://doi.org/10.1590/rbeb.2014.024

    Article  Google Scholar 

  4. Cho HR, Roh TS, Shim KW, Kim YO, Lew DH, Yun IS (2015) Skull reconstruction with custom made three-dimensional titanium implant. Arch Craniofac Surg 16:11–16. https://doi.org/10.7181/acfs.2015.16.1.11

    Article  Google Scholar 

  5. Eufinger H, Wehmöller M, Harders A, Heuser L (1995) Prefabricated prostheses for the reconstruction of skull defects. Int J Oral Maxillofac Surg 24:104–110. https://doi.org/10.1016/S0901-5027(05)80870-7.

    Article  Google Scholar 

  6. Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, Zanotti B, Stefini R (2012) Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. J Cranio-Maxillofacial Surg 40:e65–e70. https://doi.org/10.1016/j.jcms.2011.04.014

    Article  Google Scholar 

  7. Lee S-C, Wu C-T, Lee S-T, Chen P-J (2009) Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci 16:56–63. https://doi.org/10.1016/j.jocn.2008.04.001.

    Article  Google Scholar 

  8. Rack HJ, Qazi JI (2006) Titanium alloys for biomedical applications. Mater Sci Eng C 26:1269–1277. https://doi.org/10.1016/j.msec.2005.08.032

    Article  Google Scholar 

  9. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1:30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001

    Article  Google Scholar 

  10. Abdel-Hady Gepreel M, Niinomi M (2013) Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater 20:407–415. https://doi.org/10.1016/j.jmbbm.2012.11.014

    Article  Google Scholar 

  11. Calderoni DR, Gilioli R, Munhoz ALJ, Maciel Filho R, Zavaglia CADC, Lambert CS, Lopes ESN, Toro IFC, Kharmandayan P (2014) Paired evaluation of calvarial reconstruction with prototyped titanium implants with and without ceramic coating. Acta Cir Bras 29:579–587. https://doi.org/10.1590/S0102-8650201400150005

    Article  Google Scholar 

  12. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

    Article  Google Scholar 

  13. Xi W-M, Wang A-M, Wu Q, Liu C-H, Zhu J-F, Xia F-F (2015) An integrated CAD/CAM/robotic milling method for custom cementless femoral prostheses. Med Eng Phys 37:911–915. https://doi.org/10.1016/j.medengphy.2015.06.005

    Article  Google Scholar 

  14. Kasprzak P, Tomaszewski G, Wróbel-Wiśniewska G, Zawirski M (2011) Polypropylene-polyester cranial prostheses prepared with CAD/CAM technology. Report of first 15 cases. Clin Neurol Neurosurg 113:311–315. https://doi.org/10.1016/j.clineuro.2010.12.010

    Article  Google Scholar 

  15. Chen J-J, Liu W, Li M-Z, Wang C-T (2006) Digital manufacture of titanium prosthesis for cranioplasty. Int J Adv Manuf Technol 27:1148–1152. https://doi.org/10.1007/s00170-004-2309-y

    Article  Google Scholar 

  16. Piccininni A, Gagliardi F, Guglielmi P, De Napoli L, Ambrogio G, Sorgente D (2016) Biomedical titanium alloy prostheses manufacturing by means of superplastic and incremental forming processes, 15007. https://doi.org/10.1051/matecconf/201

    Google Scholar 

  17. Jackson M (2011) Superplastic forming and diffusion bonding of titanium alloys. In: Superplast. Form. Adv. Met. Mater. Elsevier, pp 227–246. https://doi.org/10.1533/9780857092779.3.227.

  18. Sorgente D, Palumbo G, Piccininni A, Guglielmi P, Aksenov SA (2018) Investigation on the thickness distribution of highly customized titanium biomedical implants manufactured by superplastic forming. CIRP J Manuf Sci Technol 20:29–35. https://doi.org/10.1016/j.cirpj.2017.09.004

    Article  Google Scholar 

  19. Madeira T, Silva CMA, Silva MB, Martins PAF (2015) Failure in single point incremental forming. Int J Adv Manuf Technol 80:1471–1479. https://doi.org/10.1007/s00170-014-6381-7

    Article  Google Scholar 

  20. Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol 87:479–499. https://doi.org/10.1007/s00170-016-8426-6

    Article  Google Scholar 

  21. Afonso D, Alves de Sousa R, Torcato R (2018) Integration of design rules and process modelling within SPIF technology—a review on the industrial dissemination of single point incremental forming. Int J Adv Manuf Technol 94:4387–4399. https://doi.org/10.1007/s00170-017-1130-3

    Article  Google Scholar 

  22. Landy MM, Walker PS (1988) Wear of ultra-high-molecular-weight polyethylene components of 90 retrieved knee prostheses. J Arthroplast 3:S73–S85. https://doi.org/10.1016/S0883-5403(88)80013-5.

    Article  Google Scholar 

  23. Toni A, Giardina F, Guerra G, Sudanese A, Montalti M, Stea S, Bordini B (2017) 3rd generation alumina-on-alumina in modular hip prosthesis: 13 to 18 years follow-up results. Hip Int 27:8–13. https://doi.org/10.5301/hipint.5000429

    Article  Google Scholar 

  24. Junnila M, Laaksonen I, Eskelinen A, Pulkkinen P, Ivar Havelin L, Furnes O, Marie Fenstad A, Pedersen AB, Overgaard S, Kärrholm J, Garellick G, Malchau H, Mäkelä KT (2016) Implant survival of the most common cemented total hip devices from the Nordic Arthroplasty Register Association database. Acta Orthop 87:546–553. https://doi.org/10.1080/17453674.2016.1222804

    Article  Google Scholar 

  25. Merini A, Viste A, Desmarchelier R, Fessy MH (2016) Cementless Corail™ femoral stems with laser neck etching: long-term survival, rupture rate and risk factors in 295 stems. Orthop Traumatol Surg Res 102:71–76. https://doi.org/10.1016/j.otsr.2015.10.009

    Article  Google Scholar 

  26. Pelton AR, Schroeder V, Mitchell MR, Gong XY, Barney M, Robertson SW (2008) Fatigue and durability of nitinol stents. J Mech Behav Biomed Mater 1:153–164. https://doi.org/10.1016/j.jmbbm.2007.08.001

    Article  Google Scholar 

  27. Hasegawa M, Azuma T (1979) Mechanical properties of synthetic arterial grafts. J Biomech 12:509–517. https://doi.org/10.1016/0021-9290(79)90039-3

    Article  Google Scholar 

  28. Kapila S, Sachdeva R (1989) Mechanical properties and clinical applications of orthodontic wires. Am J Orthod Dentofac Orthop 96:100–109. https://doi.org/10.1016/0889-5406(89)90251-5

    Article  Google Scholar 

  29. Zanotti B, Zingaretti N, Verlicchi A, Robiony M, Alfieri A, Parodi PC (2016) Cranioplasty. J Craniofac Surg 27:2061–2072. https://doi.org/10.1097/SCS.0000000000003025

    Article  Google Scholar 

  30. ISO 7206-4:2010, Implants for surgery—partial and total hip joint prostheses—part 4: determination of endurance properties and performance of stemmed femoral components., (n.d.)

  31. ISO 12189:2008, Implants for surgery—mechanical testing of implantable spinal devices—fatigue test method for spinal implant assemblies using an anterior support, (n.d.)

  32. ASTM F732-00 (2011), Standard test method for wear testing of polymeric materials used in total joint prostheses, (n.d.)

  33. ASTM F1801-97(2014), Standard practice for corrosion fatigue testing of metallic implant materials, (n.d.)

  34. Tsouknidas A, Maropoulos S, Savvakis S, Michailidis N (2011) FEM assisted evaluation of PMMA and Ti6Al4V as materials for cranioplasty resulting mechanical behaviour and the neurocranial protection. Biomed Mater Eng 21:139–147. https://doi.org/10.3233/BME-2011-0663.

    Google Scholar 

  35. Garcia-Gonzalez D, Jayamohan J, Sotiropoulos SN, Yoon SH, Cook J, Siviour CR, Arias A, Jérusalem A (2017) On the mechanical behaviour of PEEK and HA cranial implants under impact loading. J Mech Behav Biomed Mater 69:342–354. https://doi.org/10.1016/j.jmbbm.2017.01.012

    Article  Google Scholar 

  36. Ciancio C, Caruso MV, Fragomeni G, Ambrogio G (2016) Integrated thermomechanical model for forming glass containers. MATEC Web Conf 80 16010-1-16010–6. https://doi.org/10.1051/matecconf/201.

  37. UNI EN ISO 6507, Metallic materials—Vickers hardness test—part 1: test method, (n.d.)

  38. Lee H-S, Yoon J-H, Park CH, Ko YG, Shin DH, Lee CS (2007) A study on diffusion bonding of superplastic Ti–6Al–4V ELI grade. J Mater Process Technol 187–188:526–529. https://doi.org/10.1016/j.jmatprotec.2006.11.215

    Article  Google Scholar 

  39. Sorgente D, Palumbo G, Piccininni A, Guglielmi P, Tricarico L (2017) Modelling the superplastic behaviour of the Ti6Al4V-ELI by means of a numerical/experimental approach. Int J Adv Manuf Technol 90:1–10. https://doi.org/10.1007/s00170-016-9235-7

    Article  Google Scholar 

  40. Bonet J, Wood RD, Collins R (1994) Pressure-control algorithms for the numerical simulation of superplastic forming. Int J Mech Sci 36:297–309. https://doi.org/10.1016/0020-7403(94)90036-1

    Article  MATH  Google Scholar 

  41. Ambrogio G, Ciancio C, Filice L, Gaglairdi F (2016) Theoretical model for temperature prediction in Incremental Sheet Forming - Experimental validation. Int J Mech Sci 108-109:39–48. https://doi.org/10.1016/j.ijmecsci.2016.01.030

    Article  Google Scholar 

  42. ASTM Standard D. 7136; 2005, Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event, (n.d.)

Download references

Acknowledgements

The activities in this work were funded by the Italian Ministry of Education, Universities and Research Government through the PRIN Project 2012 “Biomedical Titanium alloy prostheses manufacturing by means of Superplastic and Incremental Forming processes” (project acronym: BIOFORMING).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ambrogio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrogio, G., Palumbo, G., Sgambitterra, E. et al. Experimental investigation of the mechanical performances of titanium cranial prostheses manufactured by super plastic forming and single-point incremental forming. Int J Adv Manuf Technol 98, 1489–1503 (2018). https://doi.org/10.1007/s00170-018-2338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2338-6

Keywords

Navigation