Skip to main content
Log in

Development and evaluation of friction models for chatter simulation in cold strip rolling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

High-speed rolling and high reduction usually are desirable as increase mill productivity in the cold strip rolling. However, most often, these conditions lead to the creation of chatter vibration which has a significant effect on the price of the rolling products. Experimental results show that friction conditions play an important role in the chatter. In this research, in order to stimulate chatter in tandem cold strip rolling mill, a new friction model has been provided based on unsteady mixed lubrication. In addition, chatter modeling has been done based on the simple friction models of Coulomb and Tresca. The friction model of Tresca has been simulated both linearly and nonlinearly, and work roll flattening and strain hardening effects have been undertaken as well. From the viewpoint of four output parameters, i.e., chatter critical speed, dominant frequency, rolling force, and rolling torque, the simulation results have been compared with experimental data taken from an industrial two-stand tandem rolling mill. Also, a parametric study on the effect of some of the major characteristics of rolling lubricant on the four output parameters is conducted. The key result of the research is that unsteady lubrication model, much better than simple friction models, can simulate friction conditions governing the chatter phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimura Y, Fujita N, Matsubara Y, Kobayashi K, Amanuma Y, Yoshioka O, Sodani Y (2015) High-speed rolling by hybrid-lubrication system in tandem cold rolling mills. J Mater Process Technol 216:357–368. https://doi.org/10.1016/j.jmatprotec.2014.10.002

    Article  Google Scholar 

  2. Lin Y-J, Suh CS, Langari R, Noah ST (2003) On the characteristics and mechanism of rolling instability and chatter. J Manuf Sci Eng 125(4):778–786

    Article  Google Scholar 

  3. Hu P-A, Zhao H, Ehmann KF (2006) Third-octave-mode chatter in rolling. Part 1: chatter model. Proc Inst Mech Eng, Part B: J Eng Manuf 220(8):1267–1277

    Article  Google Scholar 

  4. Niroomand MR, Forouzan MR, Salimi M (2015) Theoretical and experimental analysis of chatter in tandem cold rolling mills based on wave propagation theory. ISIJ Int 55(3):637–646

    Article  Google Scholar 

  5. Zhao H, Ehmann KF (2013) Stability analysis of chatter in tandem rolling mills—part 1: single- and multi-stand negative damping effect. J Manuf Sci Eng 135(3):031001–031001. https://doi.org/10.1115/1.4024032

    Article  Google Scholar 

  6. Sawalhi N, Randall RB (2011) Vibration response of spalled rolling element bearings: observations, simulations and signal processing techniques to track the spall size. Mech Syst Signal Process 25(3):846–870

    Article  Google Scholar 

  7. Niroomand MR, Forouzan MR, Salimi M, Kafil M (2012) Frequency analysis of chatter vibrations in tandem rolling mills. J Vibroengineering 14(2):852–865

    Google Scholar 

  8. Shao Y, Deng X, Yuan Y, Mechefske CK, Chen Z (2014) Characteristic recognition of chatter mark vibration in a rolling mill based on the non-dimensional parameters of the vibration signal. J Mech Sci Technol 28(6):2075–2080. https://doi.org/10.1007/s12206-014-0106-6

    Article  Google Scholar 

  9. Kozhevnikova IA, Kozhevnikov AV, Sorokin GA, Markushevskii NA (2016) Damping of vibrations in the primary drives of cold-rolling mills. Steel Translat 46(10):739–741. https://doi.org/10.3103/s096709121610003x

    Article  Google Scholar 

  10. Brusa E, Lemma L (2009) Numerical and experimental analysis of the dynamic effects in compact cluster mills for cold rolling. J Mater Process Technol 209(5):2436–2445

    Article  Google Scholar 

  11. Makarov YD, Beloglazov EG, Nedorezov IV, Mezrina TA (2008) Cold-rolling parameters prior to vibration in a continuous mill. Steel Translat 38(12):1040–1043

    Article  Google Scholar 

  12. Petit B, Decrequy D, Jakubowski A, Bertolini F, Perret J, Gouttebroze S (2005) Global approach of 3rd octave chatter vibrations at Arcelor Mardyck cold rolling mill and analysis of technological interactions. Rev Metall/Cah d’Inf Tech 102(7–8):535–541 + iii-vi

    Google Scholar 

  13. Wu S, Shao Y, Wang L, Yuan Y, Mechefske CK (2015) Relationship between chatter marks and rolling force fluctuation for twenty-high roll mill. Eng Fail Anal 55:87–99. https://doi.org/10.1016/j.engfailanal.2015.05.008

    Article  Google Scholar 

  14. Mosayebi M, Zarrinkolah F, Farmanesh K (2017) Calculation of stiffness parameters and vibration analysis of a cold rolling mill stand. Int J Adv Manuf Technol:1–11. https://doi.org/10.1007/s00170-017-0026-6

  15. J-l S, Peng Y, H-m L (2014) Dynamic characteristics of cold rolling mill and strip based on flatness and thickness control in rolling process. J Cent South Univ 21(2):567–576. https://doi.org/10.1007/s11771-014-1975-7

    Article  Google Scholar 

  16. Kim Y, Kim C-W, Lee S, Park H (2013) Dynamic modeling and numerical analysis of a cold rolling mill. Int J Precis Eng Manuf 14(3):407–413. https://doi.org/10.1007/s12541-013-0056-4

    Article  Google Scholar 

  17. Fujita N, Kimura Y, Kobayashi K, Itoh K, Amanuma Y, Sodani Y (2016) Dynamic control of lubrication characteristics in high speed tandem cold rolling. J Mater Process Technol 229:407–416. https://doi.org/10.1016/j.jmatprotec.2015.09.042

    Article  Google Scholar 

  18. Heidari A, Forouzan MR, Akbarzadeh S (2014) Development of a rolling chatter model considering unsteady lubrication. ISIJ Int 54(1):1–6

    Article  Google Scholar 

  19. Mancini E, Campana F, Sasso M, Newaz G (2012) Effects of cold rolling process variables on final surface quality of stainless steel thin strip. Int J Adv Manuf Technol 61(1):63–72. https://doi.org/10.1007/s00170-011-3698-3

    Article  Google Scholar 

  20. Johnson RE, Qi Q (1994) Chatter dynamics in sheet rolling. Int J Mech Sci 36(7):617–630

    Article  Google Scholar 

  21. Lin H, Zou J, Yue H (1999) Four-high mill stand chatter of the third-octave mode. Kang T’ieh/Iron and Steel (Peking) 34 (Compendex):56–59

  22. Chen Y, Shi T, Yang S (2003) A model for studying properties of the mode-coupling type instability in friction induced oscillations on 4-h cold rolling mills. Key Eng Mater 245:123–130

    Article  Google Scholar 

  23. Yun IS, Wilson WRD, Ehmann KF (1998) Chatter in the strip rolling process, part 1: dynamic model of rolling. J Manuf Sci Eng 120(2):330–336

    Article  Google Scholar 

  24. Zhao H, Ehmann KF (2013) Stability analysis of chatter in tandem rolling mills—part 2: the regenerative effect. J Manuf Sci Eng 135(3):031002–031002. https://doi.org/10.1115/1.4024033

    Article  Google Scholar 

  25. Yang X, C-n T, G-f Y, J-j M (2010) Coupling dynamic model of chatter for cold rolling. Jo Iron Steel Res Int 17(12):30–34. https://doi.org/10.1016/s1006-706x(10)60193-8

    Article  Google Scholar 

  26. Kim Y, Park H, Lee SS, Kim CW (2012) Development of a mathematical model for the prediction of vibration in a cold rolling mill including the driving system. ISIJ Int 52(6):1135–1144

    Article  Google Scholar 

  27. Liu X, Zang Y, Gao Z, Zeng L (2016) Time delay effect on regenerative chatter in tandem rolling mills. Shock Vib 2016:15. https://doi.org/10.1155/2016/4025650

    Google Scholar 

  28. Lingqiang Z, Yong Z, Zhiying G (2016) Effect of rolling process parameters on stability of rolling mill vibration with nonlinear friction. J Vibroengineering 18(2):1288–1306

    Google Scholar 

  29. Tung AC-P (1998) Unsteady lubrication in metal forming processes. 9832705, Northwestern University, United States—Illinois.

  30. Xie H, K-i M, Furushima T, Tada K, Jiang Z (2016) Lubrication characterisation analysis of stainless steel foil during micro rolling. Int J Adv Manuf Technol 82(1):65–73. https://doi.org/10.1007/s00170-015-7344-3

    Article  Google Scholar 

  31. Liu L, Zang Y, Chen Y (2011) Hydrodynamic analysis of partial film lubrication in the cold rolling process. Int J Adv Manuf Technol 54(5):489–493. https://doi.org/10.1007/s00170-010-2951-5

    Article  Google Scholar 

  32. Saniei M, Salimi M (2006) Development of a mixed film lubrication model in cold rolling. J Mater Process Technol 177(Compendex):575–581

    Article  Google Scholar 

  33. Wilson WRD, Marsault N (1998) Partial hydrodynamic lubrication with large fractional contact areas. J Tribol 120(1):16–20

    Article  Google Scholar 

  34. Roelands CJA (1966) Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils. Delft University of Technology, The Netherlands

    Google Scholar 

  35. Han H (2005) Determination of mean flow stress and friction coefficient by the modified two-specimen method in cold rolling. J Mater Process Technol 159(3):401–408. https://doi.org/10.1016/j.jmatprotec.2004.06.005

    Article  Google Scholar 

  36. Heidari A, Forouzan MR, Akbarzadeh S (2014) Effect of friction on tandem cold rolling mills chattering. ISIJ Int 54(10):2349–2356. https://doi.org/10.2355/isijinternational.54.2349

    Article  Google Scholar 

  37. Heidari A, Forouzan MR (2013) Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations. J Adv Res 4(1):27–34. https://doi.org/10.1016/j.jare.2011.12.001

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Mobarakeh Steel Company for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Heidari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, A., Forouzan, M.R. & Niroomand, M.R. Development and evaluation of friction models for chatter simulation in cold strip rolling. Int J Adv Manuf Technol 96, 2055–2075 (2018). https://doi.org/10.1007/s00170-018-1658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1658-x

Keywords

Navigation