Skip to main content

Advertisement

Log in

Modeling and optimization of surface roughness in keyway milling using ANN, genetic algorithm, and particle swarm optimization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper emphasizes on the development of a combined study of surface roughness for modeling and optimization of cutting parameters for keyway milling operation of C40 steel under wet condition. Spindle speed, feed, and depth of cut are considered as input parameters and surface roughness (Ra) is selected as output parameter. Surface roughness model is developed by both artificial neural networks (ANN) and response surface methodology (RSM). ANOVA analysis is performed to determine the effect of process parameters on the response. Back-propagation algorithm based on Levenberg-Marquardt (LM) and gradient descent (GDX) methods is used separately to train the neural network and results obtained from the two methods are compared. It is found that network trained by the LM algorithm gives better result. ANN model (trained by the LM algorithm) is coupled with genetic algorithm (GA) and RS model is further interfaced with the GA and particle swarm optimization (PSO) to optimize the cutting conditions that lead to minimum surface roughness. It is found that RSM coupled with PSO gives better result and the result is validated by confirmation test. Good agreement is observed between the predicted Ra value and experimental Ra value for RSM-PSO technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koshy P, Dewes RC, Aspinwall DK (2002) High speed end milling of hardened AISI D2 tool steel (~58 HRC). J Mater Process Technol 127(2):266–273. https://doi.org/10.1016/S0924-0136(02)00155-3

    Article  Google Scholar 

  2. Bhandari VB (2007) Design of machine elements. Tata McGraw Hill Publishing Company Ltd., New Delhi

    Google Scholar 

  3. https://ec.kamandirect.com/content/resources/2010/downloads/falk_metric_key_keyway.pdf. Accessed 05 July 2017

  4. Noordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A (2004) Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J Mater Process Technol 145(1):46–58. https://doi.org/10.1016/S0924-0136(03)00861-6

    Article  Google Scholar 

  5. Tzeng CJ, Chen RY (2013) Optimization of electric discharge machining process using the response surface methodology and genetic algorithm approach. Int J Precis Eng Manuf 14(5):709–717. https://doi.org/10.1007/s12541-013-0095-x

    Article  Google Scholar 

  6. Suresh PVS, Rao PV, Deshmukh SG (2002) A genetic algorithmic approach for optimization of surface roughness prediction model. Int J Mach Tools Manuf 42(6):675–680. https://doi.org/10.1016/S0890-6955(02)00005-6

    Article  Google Scholar 

  7. Prakasvudhisarn C, Kunnapapdeelert S, Yenradee P (2009) Optimal cutting condition determination for desired surface roughness in end milling. Int J Adv Manuf Technol 41(5-6):440–451. https://doi.org/10.1007/s00170-008-1491-8

    Article  Google Scholar 

  8. Deng ZH, Zhang XH, Liu W, Cao H (2009) A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding. Int J Adv Manuf Technol 45(9-10):859–866. https://doi.org/10.1007/s00170-009-2029-4

    Article  Google Scholar 

  9. Oktem H (2009) An integrated study of surface roughness for modeling and optimization of cutting parameters during end milling operation. Int J Adv Manuf Technol 43(9-10):852–861. https://doi.org/10.1007/s00170-008-1763-3

    Article  Google Scholar 

  10. Zain AM, Haron H, Sharif S (2012) Integrated ANN–GA for estimating the minimum value for machining performance. Int J Prod Res 50(1):191–213. https://doi.org/10.1080/00207543.2011.571454

    Article  MATH  Google Scholar 

  11. Oktem H, Erzurumlu T, Kurtaran H (2005) Application of response surface methodology in the optimization of cutting conditions for surface roughness. J Mater Process Technol 170(1-2):11–16. https://doi.org/10.1016/j.jmatprotec.2005.04.096

    Article  Google Scholar 

  12. Dikshit MK, Puri AB, Maity A (2014) Analysis of cutting forces and optimization of cutting parameters in high speed ball-end milling using response surface methodology and genetic algorithm. Procedia Mater Sci 5:1623–1632

    Article  Google Scholar 

  13. Tsai YH, Chen JC, Lou SJ (1999) An in-process surface recognition system based on neural networks in end milling cutting operations. Int J Mach Tools Manuf 39(4):583–605. https://doi.org/10.1016/S0890-6955(98)00053-4

    Article  Google Scholar 

  14. Alauddin M, El Baradie MA, Hashmi MS (1996) Prediction of tool life in end milling by response surface methodology. J Mater Process Technol 71:456–465

    Article  Google Scholar 

  15. Al-Zubaidi S, Ghani JA, Haron CH (2013) Optimization of cutting conditions for end milling of Ti6Al4V alloy by using a gravitational search algorithm (GSA). Meccanica 48(7):1701–1715. https://doi.org/10.1007/s11012-013-9702-2

    Article  MATH  Google Scholar 

  16. Jeyakumar S, Marimuthu K, Ramachandran T (2015) Optimization of machining parameters of Al6061 composite to minimize the surface roughness–modelling using RSM and ANN. Indian J Eng Mater Sci 22:29–37

    Google Scholar 

  17. Premnath A, Alwarsany T, Abhinav T, Krishnakant CA (2012) Surface roughness prediction by response surface methodology in milling of hybrid Al composites. Procedia Eng 38:745–752. https://doi.org/10.1016/j.proeng.2012.06.094

    Article  Google Scholar 

  18. Zhong ZW, Khoo LP, Han ST (2006) Prediction of surface roughness of turned surfaces using neural networks. Int J Adv Manuf Technol 28(7-8):688–693. https://doi.org/10.1007/s00170-004-2429-4

    Article  Google Scholar 

  19. Huang BP, Chen JC, Li Y (2008) Artificial-neural-network-based surface roughness Pokayoke system for end-milling operations. Neurocomputing 71(4-6):544–549. https://doi.org/10.1016/j.neucom.2007.07.029

    Article  Google Scholar 

  20. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway NJ:1942–1948

  21. Raja SB, Baskar N (2011) Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. Int J Adv Manuf Technol 54(5):445–463. https://doi.org/10.1007/s00170-010-2958-y

    Article  Google Scholar 

  22. Raja SB, Baskar N (2012) Application of particle swarm optimization technique for achieving desired milled surface roughness in minimum machining time. Expert Syst Appl 39(5):5982–5989. https://doi.org/10.1016/j.eswa.2011.11.110

    Article  Google Scholar 

  23. Hrelja M, Klancnik S, Irgolic T, Paulic M, Balic J, Brezocnik M (2014) Turning parameters optimization using particle swarm optimization. Procedia Eng 69:670–677

    Article  Google Scholar 

  24. Zhang W, Ma D, Wei JJ, Liang HF (2014) A parameter selection strategy for particle swarm optimization based on particle positions. Expert Syst Appl 41(7):3576–3584. https://doi.org/10.1016/j.eswa.2013.10.061

    Article  Google Scholar 

  25. Malviya R, Pratihar DK (2011) Tuning of neural networks using particle swarm optimization to model MIG welding process. Swarm Evol Comput 1(4):223–235. https://doi.org/10.1016/j.swevo.2011.07.001

    Article  Google Scholar 

  26. Zain AM, Haron H, Sharif S (2011) Integration of simulated annealing and genetic algorithm to estimate optimal solutions for minimising surface roughness in end milling Ti-6AL-4V. Int J Comput Integr Manuf 24(6):574–592. https://doi.org/10.1080/0951192X.2011.566629

    Article  Google Scholar 

  27. Gupta MK, Sood PK, Sharma VS (2016) Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum quantity lubrication environment. Mater Manuf Process 31(13):1671–1682. https://doi.org/10.1080/10426914.2015.1117632

    Article  Google Scholar 

  28. Tamang SK, Chandrasekaran M (2017) Integrated optimization methodology for intelligent machining of inconel 825 and its shop-floor application. J Braz Soc Mech Sci Eng 39:865–877

    Article  Google Scholar 

  29. Malghan RL, Rao KMC, Shettigar AK, Rao SS, Souza RJD (2016) Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation. J Braz Soc Mech Sci Eng 1–13

  30. Kumar AH, Subba Rao G, Rajmohan T (2015) Comparison of optimum cutting parameters for AISI1042 in turning operation by genetic algorithm and particle swarm optimization. Appl Mech Mater 813–814:285–292

    Article  Google Scholar 

  31. Selaimia AA, Yallese MA, Bensouilah H, Meddour I, Khattabi R, Mabrouki T (2017) Modeling and optimization in dry face milling of X2CrNi18-9 austenitic stainless steel using RMS and desirability approach. Meas J Int Meas Confed 107:53–67. https://doi.org/10.1016/j.measurement.2017.05.012

    Article  Google Scholar 

  32. Gareta R, Romeo LM, Gil A (2006) Forecasting of electricity prices with neural networks. Energy Convers Manag 47(13-14):1770–1778. https://doi.org/10.1016/j.enconman.2005.10.010

    Article  Google Scholar 

  33. Kalogirou SA (2003) Artificial intelligence for the modeling and control of combustion processes: a review. Prog Energy Combust Sci 29(6):515–566. https://doi.org/10.1016/S0360-1285(03)00058-3

    Article  Google Scholar 

  34. Karataş C, Sozen A, Dulek E (2009) Modelling of residual stresses in the shot peened material C-1020 by artificial neural network. Expert Syst Appl 36(2):3514–3521. https://doi.org/10.1016/j.eswa.2008.02.012

    Article  Google Scholar 

  35. Asiltürk I, Çunkaş M (2011) Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst Appl 38(5):5826–5832. https://doi.org/10.1016/j.eswa.2010.11.041

    Article  Google Scholar 

  36. Khalid HH, Ghulam Z, Raza MB, Khalil S (2016) Optimization of process parameters for high speed machining of Ti-6Al-4V using response surface methodology. Int J Adv Manuf Technol 85(5–8):1847–1856

    Google Scholar 

  37. Mousavi SM, Hajipour V, Niaki STA, Alikar N (2013) Optimizing multi-item multi-period inventory control system with discounted cash flow and inflation: two calibrated meta-heuristic algorithms. Appl Math Model 37(4):2241–2256. https://doi.org/10.1016/j.apm.2012.05.019

    Article  MathSciNet  MATH  Google Scholar 

  38. David LC (1997) Genetic algorithms. University of Illinois, Champaign

    Google Scholar 

  39. Ozcelik B, Oktem H, Kurtaran H (2005) Optimum surface roughness in end milling Inconel 718 by coupling neural network and genetic algorithm. Int J Adv Manuf Technol 27(3-4):234–241. https://doi.org/10.1007/s00170-004-2175-7

    Article  Google Scholar 

  40. Chen WC, Nguyen MH, Chiu WH, Chen TN, Tai PH (2016) Optimization of the plastic injection molding process using the Taguchi method, RSM, and hybrid GA-PSO. Int J Adv Manuf Technol 83(9–12):1873–1886. https://doi.org/10.1007/s00170-015-7683-0

    Article  Google Scholar 

  41. Mousavi SM, Sadeghi J, Niaki ST, Alikar N, Bahreininejad A, Metselaar HS (2014) Two parameter-tuned meta-heuristics for a discounted inventory control problem in a fuzzy environment. Inf Sci 276:42–62. https://doi.org/10.1016/j.ins.2014.02.046

    Article  MathSciNet  Google Scholar 

  42. Sadeghi J, Mousavi SM, Niaki ST, Sadeghi S (2013) Optimizing a multi-vendor multi-retailer vendor managed inventory problem: two tuned meta-heuristic algorithms. Knowl-Based Syst 50:159–170. https://doi.org/10.1016/j.knosys.2013.06.006

    Article  Google Scholar 

  43. Mousavi SM, Hajipour V, Niaki ST, Aalikar N (2014) A multi-product multi-period inventory control problem under inflation and discount: a parameter-tuned particle swarm optimization algorithm. Int J Adv Manuf Technol 70(9–12):1739–1756. https://doi.org/10.1007/s00170-013-5378-y

    Article  Google Scholar 

  44. Mousavi SM, Alikar N, Niaki ST, Bahreininejad A (2015) Optimizing a location allocation-inventory problem in a two-echelon supply chain network: a modified fruit fly optimization algorithm. Comput Ind Eng 87:543–560. https://doi.org/10.1016/j.cie.2015.05.022

    Article  Google Scholar 

  45. Montgomery D, Altintas Y (1991) Mechanism of cutting forces and surface generation in dynamic milling. ASME J Eng Ind 113(2):160–168. https://doi.org/10.1115/1.2899673

    Article  Google Scholar 

  46. Alauddin M, El Baradie MA, Hashmi MSJ (1995) Computer-aided analysis of a surface-roughness model for end milling. J Mater Process Tech 55(2):123–127. https://doi.org/10.1016/0924-0136(95)01795-X

    Article  Google Scholar 

  47. Bhardwaj B, Kumar R, Singh PK (2013) Effect of machining parameters on surface roughness in end milling of AISI 1019 steel. Proc Inst Mech Eng part B: J Eng Manuf 228:704–714

    Article  Google Scholar 

  48. Wang M-Y, Chang H-Y (2004) Experimental study of surface roughness in slot end milling AL2014-T6. Int J Mach Tools Manuf 44(1):51–57. https://doi.org/10.1016/j.ijmachtools.2003.08.011

    Article  Google Scholar 

  49. Mansour A, Abdalla H (2002) Surface roughness model for end milling: a semi-free cutting carbon case hardening steel (EN32) in dry condition. J Mater Process Tech 124(1-2):183–191. https://doi.org/10.1016/S0924-0136(02)00135-8

    Article  Google Scholar 

  50. Ghani JA, Choudhury IA, Hassan HH (2003) Application of Taguchi method in the optimization of end milling parameters. J Mater Process Tech 145:84–92

    Article  Google Scholar 

  51. Pathak L, Singh V, Niwas R, Osama K, Khan S, Haque S, Tripathi CK, Mishra BN (2015) Artificial intelligence versus statistical modeling and optimization of cholesterol oxidase production by using Streptomyces Sp. PLoS One 10(9):e0137268. https://doi.org/10.1371/journal.pone.0137268

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the kind support and cooperation provided by the technical staffs of the workshop in IIEST, Shibpur. The author sincerely thanks Mr. Tapan Kumar Das, workshop inspector, IIEST, Shibpur, for his kind help during experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourhari Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, G., Mandal, P. & Mondal, S.C. Modeling and optimization of surface roughness in keyway milling using ANN, genetic algorithm, and particle swarm optimization. Int J Adv Manuf Technol 100, 1223–1242 (2019). https://doi.org/10.1007/s00170-017-1417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1417-4

Keywords

Navigation