Skip to main content
Log in

A review on the machining of cast irons

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Nowadays, the search for new materials is concerning to reduce the relative “efficiency/weight” ratio and its costs, in general, in the whole manufacturing chain, since the design until the final manufacturing stage. The efforts to achieve these requirements must fall in one of two options: (i) selecting “new” materials with similar strength of the “old,” but with low density or (ii) increasing the strength of the existing materials by adding alloying elements or by heat treatment. Choosing the best material for a given application depends on a few parameters such as mechanical loads, thermal environments, manufacturing costs, recycling, public acceptance, and workability. Among several kinds of materials are the cast irons, which almost always provide good machinability and low production cost. Under the scenario of the Industrial Revolution to date, cast iron received great emphasis on its development from the point of view of its properties and economic advantages. Currently, among the metallic materials, cast irons are the second most produced, after steels. They are an extremely important group of metal for the industry because, by introducing alloying elements and applying appropriate heat treatment, their use has become viable in some applications that were exclusively of steels. The several grades and groups available, on the other hand, brings another concern about their machinability. After production on the foundry, cast irons always are processed by machining, involving a large amount of money. With the goal of bringing relevant information on the machinability characteristics of cast irons, this review was produced. It covers the main output parameters in machining (forces and power consumption, cutting temperature, surface roughness, recommended cutting tools, tool wear, and corresponding use of computational modeling technique, by using the finite element method) finalizing with future trends. It is hoped to fill a gap in the literature for those involved with machinability of this important metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abele R, Sahm A, Schultz H (2002) Wear mechanism when machining compacted graphite iron. Ann CIRP 51(1):53–56

    Article  Google Scholar 

  2. Andrade CLF (2005) Análise de furação do ferro fundido vermicular com brocas de metal-duro com canais retos revestidas com TiN e TiAlN. Dissertação de Mestrado, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina: Florianópolis

  3. Anon H (2001) Machining ductile irons. International Nickel Co. Inc., New York

    Google Scholar 

  4. Baohong T, Fengzhang R, Fengjun L, Weiming L, Hanhong M (2008) Effect of inoculating addition on machinability of gray cast iron. J Rare Earths 27(2):294

    Google Scholar 

  5. Barbosa PA, Costa ES, Guesser WL, Machado AR (2015) Comparative study of the machinability of austempered and pearlitic ductile irons in drilling process. J Braz Soc Mech Sci Eng 37:115–122. https://doi.org/10.1007/s40430-014-0161-z

    Article  Google Scholar 

  6. Bates CE (1996) Study examines influences on machinability of iron castings. Mod Cast 86:36

    Google Scholar 

  7. Boehs L, Aguiar CG, Ferreira JC (2000) A Usinagem do ferro fundido nodular de fundição contínua. Máquinas e Metais, p.58–72

  8. Boff CR (2003) Metodologia de analise de blocos de motores - aplicação em blocos de motor diesel de ferro fundido vermicular. Dissertação de Mestrado, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Florianópolis

  9. Bonifacio MER, Diniz AE (1994) Correlating tool wear, tool life, surface roughness, and vibration in finish turning with coated carbide tools. Wear 173:137–144

    Article  Google Scholar 

  10. Broskea TJ (1987) High speed machining of grey cast iron with polycrystalline cubic boron nitride tool. in: Proceedings of the Conference on Advances in Tool Materials for Use in High Speed Machining, p 39–47

  11. Burke CM, Moore DJ, Parolini JR, Rundman KB, Waarala D (1999) Machinability of grey cast iron: a drilling study. Trans Am Foundry Soc 107(p):567–575

    Google Scholar 

  12. Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. Ann CIRP 52:483–507

    Article  Google Scholar 

  13. Callister WD (2006) Materials science and engineering—an introduction. Editora McGrall-Hill., 7ª ed., 832 p

  14. Camusçu N (2006) Effect of cutting speed on the performance of Al2O3 based ceramic tools in turning nodular cast iron. Int J Iron Steel Res 10:997–1006

    Google Scholar 

  15. Castillo WJG (2005) Furação profunda de ferro fundido cinzento GG25 com brocas de metal duro com canais. Dissertação de Mestrado do Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Santa Catarina, Florianópolis

  16. Chen W (2000) Cutting forces and surface finish when machining medium hardness steel using CBN tools. Int J Mach Tool Manu 40:45–66

    Google Scholar 

  17. Chen L, Zhou J, Bushlya V, Stahl JE (2015) Influences of micro mechanical property and microstructure on performance of machining high chromium white cast iron with cBN tools. Proc CIRP 31:172–178

    Article  Google Scholar 

  18. Chiaverini V (2005) Aços e ferros fundidos. Associação Brasileira de Metalurgia e Materiais – ABM, 7ª ed

  19. Chuzhoy L, Devor RE, Kapoor SG, Bammann DJ (2002) Microstructure-level modeling of ductile iron machining. ASME J Manuf Sci Eng 124:162–169

    Article  Google Scholar 

  20. Cohen PH, Voigt RC (2003) Influence of section size on machinability of ductile irons. Keith Millis Symposium on Ductile Cast Iron

  21. Cristopher J, Grabel J (2003) Machining and grinding of iron castings. Castings Engineering Handbook

  22. Dahl K, Hessman I (2005) Sandvik AB. Method of Milling Engine Blocks. US6896452

  23. Davis JR (1996) ASM specialty handbook: cast irons. 494, Materials Park, OH

  24. Dawson S (1999) Compacted graphite iron: mechanical and physical properties for engine design. Werkstoff und automobilantrieb (Materials in powertrain), VDI (Verein Deutscher Ingenieure. Dresden, Germany

  25. Dawson S (2002) Process control for the production of compacted graphite iron. 106th, AFS, Casting Congress Kansas City

  26. Dawson S (2008) Compacted graphite iron—a material solution for modern diesel engine cylinder blocks and heads. 68th WFCWorld Foundry Congress, p 93–99, 7th–10th February Chennai, India

  27. Dawson W, Schroeder T (2004) Practical applications for compacted graphite iron. AFS Transactions, Des Plaines, USA: p.1–9

  28. De Sousa JAG (2014) Influência da microestrutura na usinabilidade do ferro fundido nodular [Inflence of the microstructure in the machinability of ductile iron]. PhD thesis, Programa de pós-graduação em Engenharia Mecânica, FEMEC, Federal University of Uberlândia, Uberlândi/MG, Brasil, 191 pgs, [In Portuguese]

  29. Degarmo EP, Black JT, Kohser RA (1997) Materials and processes in manufacturing. Prentice-Hall Inc., New Jersey

    Google Scholar 

  30. Deming M, Young B, Ratliff D (1994) PCBN turns grey cast iron. Cutting Tool Eng 06:84–93

    Google Scholar 

  31. Diniz EA, Marcondes FC, Coppini NL (2006) Tecnologia da usinagem dos materiais. Editora Artber

  32. DIS (2001) Ductile iron data for design engineer. Ductile Iron Society

  33. Doré C (2007) Influência da variação da nodularidade na usinabilidade do ferro fundido vermicular”, Dissertação de Mestrado em Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia – MG, 132 p

  34. Dumitrescu M, Elbestawi MA, El-Wardany TI, Chen L (2005) Critical assessment of carbide and PCBN tool performance in high speed milling of dies and moulds. International Transactions of the North American Manufacturing Research Institution of SME, North American manufacturing research conference (NAMRC XXVI), Atlanta, p 183

    Google Scholar 

  35. Ehman KF, Kapoor SG, Devor RE, Lazoglu I (1997) Machining process modeling: a review. J Manuf Sci Eng Trans ASME 19:55–63

    Google Scholar 

  36. Eleftheriou E, Bates CE (1999) Effects of inoculation on machinability of gray cast iron. AFS Trans 99–122:659

    Google Scholar 

  37. Evangelista Luiz N, Machado AR (2008) Development trends and review of free-machining steels. Proc IMechE B: J Eng Manuf 222(2):347–360. https://doi.org/10.1243/09544054JEM861

    Article  Google Scholar 

  38. Fang XD (1994) Experimental investigation of overall machining performance with overall progressive tool wear at different tool faces. Wear 173:171–178

    Article  Google Scholar 

  39. FE45012 em Diferentes Bitolas, Obtidos por Fundição Contínua

  40. Fengzhang REN, Fengjun LI, Weiming LIU, Zhanhong MA, Baohong TIA (2009) Effect of inoculating addition on machinability of grey cast. J Rare Earths 27:294

    Article  Google Scholar 

  41. Finzer T, Reuter U (1998) CBN for dry machining. Werkstatt und Betrieb 131:66–72

    Google Scholar 

  42. Gastel M, Konetschny C, Reuter U, Fasel C, Schulz H, Riedel R, Ortner HM (2000) Investigation of the wear mechanism of cubic boron nitride tools used for the machining of the machining of compacted graphite iron and grey cast iron. Int J Refract Met Hard Mater 18:287–296

    Article  Google Scholar 

  43. Ghani AK, Choudhury IA, Husni G (2002a) Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool. J Mater Process Technol 127:17–22

    Article  Google Scholar 

  44. Ghani AK, Choudhury IA, Husni IA (2002b) Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool. J Mater Process Technol 127:17–22

    Article  Google Scholar 

  45. Ghani JA, Rizal M, Hassan C (2014) Performance of green machining: a comparative study of turning ductile cast iron FCD700. J Clean Prod 85:289–e 292

    Article  Google Scholar 

  46. Goodrich WL (2003) Iron castings engineering handbook. AFS

  47. Grobmann G (1997) Bevorzugte Anwendungsgebiete fur PKB-Schneidstoffe. VDI – Z Spezial erkzeuge 4:18–22

    Google Scholar 

  48. Grzesik W, Malecka J (2011) Documentation of tool wear progress in the machining of nodular ductile iron with silicon nitride-based ceramic tools. Int J Manuf Technol 60:121–124

    Article  Google Scholar 

  49. Grzesik W, Rech J, Zak K, Claudin C (2009) Machining performance of pearlitic–ferritic nodular cast iron with coated carbide and silicon nitride ceramic tools. Int J Mach Tool Manu 49:125–133

    Article  Google Scholar 

  50. Guesser WL (2002) Ferro fundido com grafita compacta. Metal Mater 403–405

  51. Guesser WL (2009) Propriedades Mecânicas dos Ferros Fundidos. Editora Edgard Blucher, São Paulo – SP, 1ª ed., p 309

  52. Guesser WL, Guedes LC (1997) Desenvolvimentos recentes em ferros fundidos aplicados à indústria automobilística. IX Simpósio de Engenharia Automotiva - AEA, São Paulo – SP

  53. Guesser WL, Kuhl R (1984) Ferros fundidos maleáveis. Sociedade Educacional Tupy

  54. Guesser W, Duran PV, Krause W (2004) Compacted graphite iron for diesel engine cylinder blocks. Congrès Le Diesel: Aujourd´hui et Demain, Ecole Centrale Lyon

  55. Handbook (1990) Properties and selection irons, steels and high performance alloys. Metal Handbook, 10ª ed

  56. Handbook ASM (1976) Machining. 8ª ed., vol 3

  57. Harris SG, Doyle ED, Vlasveld AC, Audy J, Quick D (2003) A study of the wear mechanisms of Ti1-xAlxN and Ti1-x-yAlxCryN coated high-speed steel twist drills under dry machining conditions. Wear 254:723–734

    Article  Google Scholar 

  58. Heck M, Ortner HM, Flege S, Reuter U, Ensinger W (2008) Analytical investigations concerning the wear behavior of cutting tools used for the machining of compacted graphite iron and grey cast iron. Int J Refract Met Hard Mater 26:197–206

    Article  Google Scholar 

  59. Herrmann M, Schulz I, Hermel W, Schubert C, Wendt A (2001) Some new aspects of microstructural design of b-Si3N4 ceramics. Z Metallkd 92:88–95

    Google Scholar 

  60. Hieber AF (2001) Fracture in compacted graphite iron. AFS Transactions: American Foundrysmen Society, Detroit, p 143–154

  61. ISO 16112 (2006) (E) Compacted (Vermicular) graphite cast irons—classifications

  62. Janowak J 1990 The grid method of cast iron selection, casting design and application. p 55–59

  63. Janowak JF, Gundlach RB (1985) Improved machinability of high strength gray iron. AFS Trans 93:961

    Google Scholar 

  64. Jiyang Z (2009) Colour metallography of cast iron. Dalian University of Technology

  65. Johannsen P (1992) Anwendung hoher Schnittgeschwindigkeiten im Fahrzeugbau. Werkstatt und Betrieb 25:79–82

    Google Scholar 

  66. Kalhofer E (2000) Manufacturing engineering for high volume production of CGI engine blocks—redesign of an existing CI line to CGI. Adam Opel AG, International Technical Development Centre, Russelsheim, Germany. In: Proceedings of the machining workshop, Contribution 10

  67. Kaminski J, Alvelid B (2000) Temperature reduction in the cutting zone in water-jet assisted turning. J Mater Process Technol 106(1–3):68–73

    Article  Google Scholar 

  68. Karandikar DA (1991) Processing of cast iron scrap from the diesel engine manufacturing industry by powder metallurgy techniques. Resour Conserv Recycl 5:61–71

    Article  Google Scholar 

  69. Kato H, Shintani K, Sumiya H (2002) Cutting performance of a blinder-less sintered cubic boron nitride tool in the high-speed milling of grey cast iron. J Mater Process Technol 27:217–221

    Article  Google Scholar 

  70. Kelly JF, Cotterell MG (2002) Minimal lubrication machining of aluminium alloys. J Mater Process Technol 120:327–334

    Article  Google Scholar 

  71. Kemeny FL (2001) Method of making Mg treated iron with improved machinability. WO 99/45156

  72. Kishawy HA, Dumitrescu M, Elbestawi MA (2005) Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. Int J Mach Tools Manuf 45(2):219–227

    Article  Google Scholar 

  73. Klink U, Flores GO (2001) Uso da grafita vermicular em cilindros fundidos. Revista Máquinas e Metais, p 38

  74. Ko TJ, Kim HS (2001) Surface integrity and machinability in intermittent hard turning. Int J Adv Manuf Technol 18:68–75

    Article  Google Scholar 

  75. König W, Klocke F (1997) Fertigungsverfahren 1: Drehen, Fräsen, Bohren. Auflage. Aachen

  76. Kosasu P, Inthidech S, Srichareonchai P, Matsubara Y (2012) Effect of silicon on subcritical heat treatment behavior and wear resistance of 16% wt% Cr cast iron with 2 wt% Mo. J Metals Mater Min 22(2):89–95

    Google Scholar 

  77. Koshy P, Dewes RC, Aspinwall DK (2002) High speed end milling of hardened AISI D2 tool steel (58 HRC) and cast iron. J Mater Process Technol 127:66–73

    Article  Google Scholar 

  78. Krishnamurthy R, Gokularathnam CV (1994) Phase transformation toughened materials for cutting tool applications. In: Whitney ED (ed) Ceramic cutting tools. Noyes Publications, New Jersey, pp 82–90

    Google Scholar 

  79. Laempic M, Henkel H (2000) Características do Motor BMW V8 diesel feito em Ferro Fundido Vermicular. Fundição e Serviços, São Paulo, pp 42–49

    Google Scholar 

  80. Lau KH, Mei D, Yeung CF, Man HC (2000) Wear characteristics and mechanisms of a thin edge cutting blade. J Mater Process Technol 2:3–7

    Google Scholar 

  81. Liu KH (2002) Machinability of pearlitic cast iron with cubic boron nitride (CBN) cutting tools. Trans ASME 124:820–832

    Article  Google Scholar 

  82. Ljustina G, Larsson RN, Fagerström M (2014) A FE based machining simulation methodology accounting for cast iron microstructure. Finite Elem Anal Des 80:1–10

    Article  Google Scholar 

  83. Loria EA (1959) Machinability and microstructure of cast ion. AFS Trans 62:163–169

    Google Scholar 

  84. Machado AR, Abrão AM, Coelho RT, Da Silva MB (2015) Theory of machining of materials. (In Portuguese: “Teoria da Usinagem dos Materiais”), Edgard Blucher: São Paulo

  85. Mamedov AT, Mamedov VA, Aliev AG (2003) Reduction annealing for cast iron powder and its effect on sintered antifriction material properties. Powder Metall Met Ceram 42:202–205

    Article  Google Scholar 

  86. Marquard R, Sorger H, McDonald M (1998) Crank it up: new materials create new possibilities. Engine Technol Int 2:58–60

    Google Scholar 

  87. Marwanga RO, Voigt RC, Cohen PH (2001) Influence of graphite morphology and matrix structure on chip formation during machining of grey irons. Trans Am Foundry Soc 107:595–607

    Google Scholar 

  88. Mills B (1996) Recent developments in cutting tool materials. J Mater Process Technol 56:16–23

    Article  Google Scholar 

  89. Mills B, Redford AH (1983) Machining of engineering materials. Applied Science Publications, London

    Google Scholar 

  90. Mocellin F (2004) Study of the machining of compacted graphite iron for drilling process. J Braz Soc Mech Sci Eng 16:22–27

    Google Scholar 

  91. Mohammed WM, Ng E, Elbestawi MA (2011) Modeling the effect of the microstructure of compacted graphite iron on chip formation. Int J Mach Tool Manu 51:753–765

    Article  Google Scholar 

  92. MSPC (2012) Ferros e aços – Informações técnicas. Available in the following link: www.mspc.eng.br/ciemat/aco240.shtml, acessado em 02/03/2012

  93. Naves VTG (2009) Estudo da usinabilidade dos ferros fundidos cinzentos ligados (CrCuSn e CrCuSnMo) e vermicular classe 350 no fresamento frontal em HSM. Dissertação de Mestrado em Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia – MG, 145 p

  94. Nayyar V, Kaminski J, Anders Kinnander A, Nyborg L (2012a) An Experimental investigation of machinability of graphitic cast iron grades; Flake, Compacted and Spheroidal Graphite Iron in Continuous Machining Operations. Proc CIRP 1:488–493

    Article  Google Scholar 

  95. Nayyar V, Kaminski J, Kinnander A, Nyborg S (2012b) An experimental investigation of machinability of graphitic cast iron grades; Flake, Compacted And Spheroidal Graphite Iron in Continuous Machining Operations. 5th CIRP Conference on High Performance Cutting

  96. Oliveira VV (2008) Influência da geometria NE furação do ferro fundido vermicular. Dissertação de Mestrado em Engenharia Mecânica, Universidade Tecnológica Federal do Paraná, Curitiba – PR, 173 p

  97. Opländer ML (2003) Parâmetros de Influência na Usinagem do Ferro Fundido com Grafita Vermicular. Máquinas e Metais, Aranda, São Paulo, p 72–95

  98. Ortner HM, Wilhartitz P (1991) The characterization of high tech materials: perspectives, challenges, trends. Mikrochim Acta 104:177–214

    Article  Google Scholar 

  99. Padilha AF (1997) Materiais de engenharia. Editora Hemus, 343 p

  100. Pashby IR, Wallbank J, Boud F (1993) Ceramic tool wear when machining austempered ductile iron. Wear 162:22–33

    Article  Google Scholar 

  101. Pereira AA (2010) Análise do desgaste da ferramenta à base de β–Si3N4 na usinagem do ferro fundido cinzento FC 250 utilizando técnicas avançadas e de alta resolução. Tese de Doutourado, Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Santa Catarina, Florianópolis - SC, 208 p

  102. Pereira AA, Boehs L, Guesser WL (2005) Como as inclusões no material da peça podem afetar o desgaste da ferramenta? O Mundo da Usinagem 4ª Ed

  103. Phillips CW (1982) Machinability of compacted graphite iron. AFS Transactions: American Foudrymens Society Transactions, Detroit, p 47–52

  104. Reuter U, Schulz H, Mcdonald M (1999) Compact and bijou—the problems associated with CGI can be overcome. Eng Technol Int 4:58–60

    Google Scholar 

  105. Reuter U, Schulz H, Dawson S, Hollinger I, Robbins M, Daeth J (2006) The effect of metallurgical variables on the machinability of compacted graphite iron. Society of Automotive Engineers, Inc, Alemanha, pp 1–18

    Google Scholar 

  106. Roy P, Sarangi SK, Ghosh A, Chattopadhyay AK (2009) Machinability study of pure aluminium and Al–12% Si alloys against uncoated and coated carbide inserts. Int J Refract Met Hard Mater 27(p):535–544

    Article  Google Scholar 

  107. Ruff GF, Doshi BK (1980) Relationship between mechanical properties and #raphite structure in cast iron. Mod Cast 70:50–55

    Google Scholar 

  108. Ryntz ED, Arnson HL (1996) Influence of mold inoculation with ferrosilicon inserts on hardness control in alloy gray iron castings. Mod Cast 66(1):53

    Google Scholar 

  109. Sahm A, Abele E, Schulz H (2002) State of the art in CGI machining. In: Compacted Graphite Iron Machining Workshop, Darmstadt

  110. Sandvik C (2007) Modern metal cutting—a practical handbook. Sandvik Coromant, Sweden

    Google Scholar 

  111. Sandvik C (2016) Catalogue available on-line – http://www.sandvik.coromant.com

  112. Santos ABS (1998) Ferro fundido vermicular – Obtenção, microestruturas e propriedades mecânicas. Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, pp 1–4

    Google Scholar 

  113. Santos SC and Sales (2007) Tribological aspects of machining of materials. (In Portuguese: “Aspectos tribológicos da usinagem dos materiais), Ed. Artliber: São Paulo

  114. Saoubi RM, Outeiro JC, Changeux B, Lebrun JL, Dias AM (1999) Residual stress analysis in orthogonal machining of standard and resulfurised AISI 316L steels. J Mater Process Technol 96:25–33

    Google Scholar 

  115. Schneider J, Richter G (2006) Eine Keramik fur viele Falle. Werkstatt und Betrieb 139:51–55

    Google Scholar 

  116. Seker UC, Ciftc I, Hasirci H (2003) The effect of alloying elements on surface roughness and cutting forces during machining of ductile iron. Mater Des 24:47–51

    Article  Google Scholar 

  117. Shao S, Dawson S, Laempic M (1996) The mechanical and physical properties of compacted graphite iron. London: SinterCast S. A. p 1–22

  118. Shaw MC, Vyas A (1998) The mechanism of chip formation with hard turning steel. Ann CIRP 47:77–82

    Article  Google Scholar 

  119. Shintani K, Kato H, Sugita H, Suzuki N (1998) Wear mechanism of PCBN tool in high speed machining of grey cast iron. 64: 261–265

  120. Silva (1991) Resistance of Si3N4 ceramic tools to thermal and mechanical loading in cutting of iron alloys. Wear 148:69–89

    Article  Google Scholar 

  121. Silva RB (2001) Alargamento cônico do Ferro Fundido Nodular GGG 40. Dissertação de Mestrado, Escola de Engenharia da Universidade Federal de Minas Gerais, Belo Horizonte - MG, 107 p

  122. Silva RB, Pereira IC, Almeida DO, Da Silva MB (2005) Investigação da usinabilidade do ferro fundido nodular”, 15° PÓSMEC, Universidade Federal de Uberlândia;

  123. Sintercast Catálogo de produtos: Compacted graphite iron. SinterCast S.A. Disponível em: <http://www.sintercast.com>. Acesso em: 02 Janeiro de 2008

  124. Smith IJ, Gillibrand D, Brooks JS, Münz WD (1997) Dry cutting performance of HSS twist drills coated with improved TiAlN. Surf Coat Technol 90(p):164–171

    Article  Google Scholar 

  125. Soo SL, Aspinwall DK (2007) Developments in modelling of metal cutting processes. Proc IMechE Part L J Mater Des Appl 221:197–211

    Google Scholar 

  126. Sousa JAG, Cardoso RN, Carvalho HC, Machado AR (2010) Investigação experimental da força de usinagem no torneamento cilíndrico de alguns materiais metálicos. VI Congresso Nacional de Engenharia Mecânica, Campina Grande – PB

  127. Souza J, Sales WF, Santos SC, Machado AR (2005) Performance of single Si3N4 and mixed Si3N4 + PCBN wiper cutting tools applied to high speed face milling of cast iron. Int J Mach Tool Manu 45:335–344

    Article  Google Scholar 

  128. Souza JVC, Nono MCA, Ribeiro MV, Machado JPB, Silva OMM (2009) Cutting forces in turning of grey cast iron using silicon nitride based cutting tool. Mater Des 30:2715–2720

    Article  Google Scholar 

  129. Sreejith PS, Ngoi BKA (2000) Dry machining: machining of the future. J Mater Process Technol 101:287–291

    Article  Google Scholar 

  130. Stachowiak GW, Batchelor AW (2001) Engineering triboly. Mater Lett 1

  131. Teles JM (2007) Torneamento de ferro fundido nodular ferritizado com nióbio utilizando ferramentas de metal duro. Dissertação de Mestrado em Engenharia Mecânica, Universidade Federal de Itajubá, Itajubá – MG, 124 p

  132. Tlustly J (1985) Dynamics of high speed milling, handbook of high speed machining technology. Chapman and Hall, London, pp 148–153

    Google Scholar 

  133. Toh CK (2004) Static and dynamic cutting force analysis when high speed rough milling hardened steel. Mater Des 25:41–50

    Article  Google Scholar 

  134. Toktas G, Tayan M, Toktas A (2006) Effect of matrix structure on the impact properties of an alloyed ductile iron. Mater Charact 57:290–299

    Article  Google Scholar 

  135. Tonshoff HK, Gey C, Tonnessen K, Sorby K (2000) High speed flank milling of Greek Ascoloy: the effect of cooling lubrication on tool wear, cutting forces, and surface integrity. In: Second international seminar on improving machine tool performance. France: Nantes-La Baule; p 13

  136. Tooptong S, Park KH, Lee SW, Kwon PY (2016) A preliminary machinability study of flake and compacted graphite irons with multilayer coated and uncoated carbide inserts. Proc Manuf XXX:1–14

    Google Scholar 

  137. Trent EM, Wright PK (2000) Metal cutting, 4th edn. Butterworth Heinemann, Boston

    Google Scholar 

  138. Viana R, Lima MSF, Sales WF, Silva WM Jr, Machado AR (2015) Laser texturing of substrate of coated tools—performance during machining and in adhesion tests. Surf Coat Technol 276:485–501. https://doi.org/10.1016/j.surfcoat.2015.06.025

    Article  Google Scholar 

  139. Xavier FA (2003) Aspectos Tecnológicos do Torneamento do Ferro Fundido Vermicular com Ferramentas de Metal-Duro, Cerâmica e CBN. Dissertação de Mestrado, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Florianópolis, 138 p

  140. Xu GF, Si NC, Fu MX (2001) Application and research of the compound inoculants on the strenght thin section grey cast iron. J Jangsu Univ Sci Technol 22:62–68

    Google Scholar 

  141. Xu CH, Feng YM, Zhang RB, Zhao SK, Xiao X, Yu GT (2009) Wear behavior of Al2O3/Ti(CN)/SiC new ceramic tool material when machining tool steel and cast iron. J Mater Process Technol 24:4633–4637

    Article  Google Scholar 

  142. Xue W, Li Y (2016) Pretreatments of gray cast iron with different inoculants. J Alloys Compd 689:408–e415

    Article  Google Scholar 

  143. Yigit R, Celik E, Findik F, Koksal S (2008) Tool life performance of multilayer hard coatings produced by HTCVD for machining of nodular cast iron. Int J Refract Met Hard Mater 26:514–524

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPEMIG, CNPq, CAPES, and MMC Metal do Brasil Ltda (Mitsubishi Materials Corp.) for the financial support. One of the authors thanks CAPES (Project number 002659/2015-08 PDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wisley Falco Sales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, J.A.G., Sales, W.F. & Machado, A.R. A review on the machining of cast irons. Int J Adv Manuf Technol 94, 4073–4092 (2018). https://doi.org/10.1007/s00170-017-1140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1140-1

Keywords

Navigation