Skip to main content

Advertisement

Log in

Laser milling of yttria-stabilized zirconia by using a Q-switched Yb:YAG fiber laser: experimental analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The present investigation deals with laser milling process of yttria-stabilized zirconia (YSZ), by using a Q-switched 30 W Yb:YAG fiber laser. First, the influence of laser operational parameters, laser beam scan speed, the number of time, and the sample surface is worked (number of repetition) and the scanning strategy was investigated. This first step allowed to identify the most suitable processing window in terms of surface quality and machined depth. Then, a systematic approach based on full factorial design of experiment was developed and successfully adopted to identify and explain the effect of each operational parameter on laser–material interaction and on the process outputs: roughness, machined depth, and material removal rate. The experimental results demonstrate that the laser treatment is suitable for YZS highlighting high repeatability, process accuracy, short machining time, and the possibility to easily control the process outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Advanced Ceramics Market Research Report -Forecast to 2021, 2016

  2. Advanced xeramics - demand and sales forecasts, market share, market size, market leaders, 2013. http://www.freedoniagroup.com/Advanced-Ceramics.html

  3. Advanced Ceramics Market, 2014. http://www.marketsandmarkets.com/PressReleases/advanced-ceramic.asp

  4. Ferraris E, Vleugels J, Guo Y, Bourell D, Kruth JP, Lauwers B (2016) Shaping of engineering ceramics by electro, chemical and physical processes. CIRP Ann - Manuf Technol 65:761–784. https://doi.org/10.1016/j.cirp.2016.06.001

    Article  Google Scholar 

  5. Garcia-Garcia FJ, Yubero F, Espinós JP, González-Elipe AR, Lambert RM (2016) Synthesis, characterization and performance of robust poison-resistant ultrathin film yttria stabilized zirconia–nickel anodes for application in solid electrolyte fuel cells. J Power Sources 324:679–686. https://doi.org/10.1016/j.jpowsour.2016.05.124

    Article  Google Scholar 

  6. Hong S, Lee D, Lim Y, Bae J, Kim Y-B (2016) Yttria-stabilized zirconia thin films with restrained columnar grains for oxygen ion conducting electrolytes. Ceram Int 42:16703–16709. https://doi.org/10.1016/j.ceramint.2016.07.123

    Article  Google Scholar 

  7. Park JH, Yoo YB, Lee KH, Jang WS, Oh JY, Chae SS, Lee HW, Han SW, Baik HK (2013) Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl Mater Interfaces 5:8067–8075. https://doi.org/10.1021/am402153g

    Article  Google Scholar 

  8. Park YM, Desai A, Salleo A, Jimison L (2013) Solution-processable zirconium oxide gate dielectrics for flexible organic field effect transistors operated at low voltages. Chem Mater 25:2571–2579. https://doi.org/10.1021/cm303547a

    Article  Google Scholar 

  9. Piezoelectric device mounted on integrated circuit chip, (2012)

  10. Cao XQ, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24:1–10. https://doi.org/10.1016/S0955-2219(03)00129-8

    Article  Google Scholar 

  11. Bernard B, Schick V, Remy B, Quet A, Bianchi L (2016) High temperature thermal properties of columnar yttria stabilized zirconia thermal barrier coating performed by suspension plasma spraying. J Phys Conf Ser 745:32012. https://doi.org/10.1088/1742-6596/745/3/032012

    Article  Google Scholar 

  12. DENRY I, KELLY J (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307. https://doi.org/10.1016/j.dental.2007.05.007

    Article  Google Scholar 

  13. Denry I, Holloway JA (2010) Ceramics for dental applications: a review. Materials (Basel) 3:351–368. https://doi.org/10.3390/ma3010351

    Article  Google Scholar 

  14. Hannink RHJ, Kelly PM, Muddle BC (2004) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83:461–487. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

    Article  Google Scholar 

  15. Ghaemi MH, Reichert S, Krupa A, Sawczak M, Zykova A, Lobach K, Sayenko S, Svitlychnyi Y (2017) Zirconia ceramics with additions of alumina for advanced tribological and biomedical applications. Ceram, Int. https://doi.org/10.1016/j.ceramint.2017.04.150

    Google Scholar 

  16. Wang L, Liu Y, Si W, Feng H, Tao Y, Ma Z (2012) Friction and wear behaviors of dental ceramics against natural tooth enamel. J Eur Ceram Soc 32:2599–2606. https://doi.org/10.1016/j.jeurceramsoc.2012.03.021

    Article  Google Scholar 

  17. Mitov G, Heintze SD, Walz S, Woll K, Muecklich F, Pospiech P (2012) Wear behavior of dental Y-TZP ceramic against natural enamel after different finishing procedures. Dent Mater 28:909–918. https://doi.org/10.1016/j.dental.2012.04.010

    Article  Google Scholar 

  18. Kang D-H, Choi H, Yoo Y-J, Kim J-H, Park Y-B, Moon H-S (2017) Effect of polishing method on surface roughness and bacterial adhesion of zirconia-porcelain veneer. Ceram Int 43:5382–5387. https://doi.org/10.1016/j.ceramint.2016.11.036

    Article  Google Scholar 

  19. Hempel U, Hefti T, Kalbacova M, Wolf-Brandstetter C, Dieter P, Schlottig F (2010) Response of osteoblast-like SAOS-2 cells to zirconia ceramics with different surface topographies. Clin Oral Implants Res 21:174–181. https://doi.org/10.1111/j.1600-0501.2009.01797.x

    Article  Google Scholar 

  20. Han S-H, Kim K-H, Han J-S, Koo K-T, Kim T-I, Seol Y-J, Lee Y-M, Ku Y, Rhyu I-C (2093) Response of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2. https://doi.org/10.5051/jpis.2011.41.5.227

    Google Scholar 

  21. Nothdurft FP, Fontana D, Ruppenthal S, May A, Aktas C, Mehraein Y, Lipp P, Kaestner L (2015) Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: a comparison of materials and surface topographies. Clin Implant Dent Relat Res 17:1237–1249. https://doi.org/10.1111/cid.12253

    Article  Google Scholar 

  22. Bollenl CML, Lambrechts P, Quirynen M (1997) Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 13:258–269. https://doi.org/10.1016/S0109-5641(97)80038-3

    Article  Google Scholar 

  23. Teughels W, Van Assche N, Sliepen I, Quirynen M (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17:68–81. https://doi.org/10.1111/j.1600-0501.2006.01353.x

    Article  Google Scholar 

  24. Dmitri Kopeliovich, Machining of ceramics [SubsTech], (n.d.). http://www.substech.com

  25. Tuersley IP, Jawaid A, Pashby IR (1994) Review: various methods of machining advanced ceramic materials. J Mater Process Technol 42:377–390. https://doi.org/10.1016/0924-0136(94)90144-9

    Article  Google Scholar 

  26. I. Global industry analysts, advanced ceramics: a global strategic business report, 2016. http://www.strategyr.com/MCP-1001.asp (accessed February 6, 2017)

  27. König W, Dauw DF, Levy G, Panten U (1988) EDM-future steps towards the machining of ceramics. CIRP Ann. - Manuf. Technol. 37:623–631. https://doi.org/10.1016/S0007-8506(07)60759-8

    Article  Google Scholar 

  28. Pachaury Y, Tandon P (2017) An overview of electric discharge machining of ceramics and ceramic based composites. J Manuf Process 25:369–390. https://doi.org/10.1016/j.jmapro.2016.12.010

    Article  Google Scholar 

  29. Lauwers B, Brans K, Liu W, Vleugels J, Salehi S, Vanmeensel K (2008) Influence of the type and grain size of the electro-conductive phase on the wire-EDM performance of ZrO2 ceramic composites. CIRP Ann. - Manuf. Technol. 57:191–194. https://doi.org/10.1016/j.cirp.2008.03.089

    Article  Google Scholar 

  30. Malek O, Vleugels J, Perez Y, De Baets P, Liu J, Van den Berghe S, Lauwers B (2010) Electrical discharge machining of ZrO2 toughened WC composites. Mater Chem Phys 123:114–120. https://doi.org/10.1016/j.matchemphys.2010.03.069

    Article  Google Scholar 

  31. Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243. https://doi.org/10.1007/s11465-013-0248-8

    Article  Google Scholar 

  32. G. (George) Chryssolouris, laser machining: theory and practice, Springer New York, 1991

  33. Samant AN, Dahotre NB (2009) Laser machining of structural ceramics—a review. J Eur Ceram Soc 29:969–993. https://doi.org/10.1016/j.jeurceramsoc.2008.11.010

    Article  Google Scholar 

  34. Gisario A, Barletta M, Conti C, Guarino S (2011) Springback control in sheet metal bending by laser-assisted bending: experimental analysis, empirical and neural network modelling. Opt Lasers Eng 49:1372–1383. https://doi.org/10.1016/j.optlaseng.2011.07.010

    Article  Google Scholar 

  35. Wang X, Shephard JD, Dear FC, Hand DP (2008) Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J Am Ceram Soc 91:391–397. https://doi.org/10.1111/j.1551-2916.2007.02163.x

    Article  Google Scholar 

  36. Lacovara P, Choi HK, Wang CA, Aggarwal RL, Fan TY (1991) Room-temperature diode-pumped Yb:YAG laser. Opt Lett 16:1089. https://doi.org/10.1364/OL.16.001089

    Article  Google Scholar 

  37. Leone C, Genna S, Tagliaferri F, Palumbo B, Dix M (2016) Experimental investigation on laser milling of aluminium oxide using a 30W Q-switched Yb:YAG fiber laser. Opt Laser Technol 76:127–137. https://doi.org/10.1016/j.optlastec.2015.08.005

    Article  Google Scholar 

  38. Leone C, Papa I, Tagliaferri F, Lopresto V (2013) Investigation of CFRP laser milling using a 30W Q-switched Yb:YAG fiber laser: effect of process parameters on removal mechanisms and HAZ formation. Compos Part A Appl Sci Manuf 55:129–142. https://doi.org/10.1016/j.compositesa.2013.08.004

    Article  Google Scholar 

  39. Kramer T, Neuenschwander B, Jäggi B, Remund S, Hunziker U, Zürcher J (2016) Influence of pulse bursts on the specific removal rate for ultra-fast pulsed laser micromachining of copper. Phys Procedia 83:123–134. https://doi.org/10.1016/j.phpro.2016.08.024

    Article  Google Scholar 

  40. S. Mutluay Unal, S.E. Ozkir, Z. Seyfioglu Polat, S. Guven, H. Asutay, The effect of ytterbium-doped fiber laser with different parameters on physical properties of zirconia surface, Photomed. Laser Surg. (2016) pho.2016.4176. doi:https://doi.org/10.1089/pho.2016.4176

  41. Dear FC, Shephard JD, Wang X, Jones JDC, Hand DP (2008) Pulsed laser micromachining of yttria-stabilized zirconia dental ceramic for manufacturing. Int J Appl Ceram Technol 5:188–197. https://doi.org/10.1111/j.1744-7402.2008.02203.x

    Article  Google Scholar 

  42. Yanagida H, Kōmoto K, Miyayama M (1996) The chemistry of ceramics. Wiley

  43. Camposilvan E, Marro FG, Mestra A, Anglada M (2015) Enhanced reliability of yttria-stabilized zirconia for dental applications. Acta Biomater 17:36–46. https://doi.org/10.1016/j.actbio.2015.01.023

    Article  Google Scholar 

  44. Bionah srl, Technical Data Sheet - BionZ Crystal, (n.d.). http://www.bionah.com/downloads/Bionah-Scheda-tecnica-BionZ-Crystal-IT-DE-EN-FR.pdf

  45. Montgomery DC (1991) Design and analysis of experiments. John Wiley, Chichester

    MATH  Google Scholar 

  46. Coleman DE, Montgomery DC (1993) A systematic approach to planning for a designed industrial experiment. Technometrics 35:1–12. https://doi.org/10.1080/00401706.1993.10484984

    Article  Google Scholar 

  47. Cebollero J, Lahoz R, Laguna-Bercero M, Peña JI, Larrea A, Orera V (2017) Characterization of laser-processed thin ceramic membranes for electrolyte-supported solid oxide fuel cells. Int J Hydrog Energy 42:13939–13948. https://doi.org/10.1016/j.ijhydene.2016.12.112

    Article  Google Scholar 

  48. Lahoz R, de la Fuente GF, Pedra JM, Carda JB (2011) Laser engraving of ceramic tiles. Int J Appl Ceram Technol 8:1208–1217. https://doi.org/10.1111/j.1744-7402.2010.02566.x

    Article  Google Scholar 

  49. Bastos FS, Oliveira EA, Fonseca LG, Vargas SM, Las Casas EB (2016) A FEM-based study on the influence of skewness and kurtosis surface texture parameters in human dental occlusal contact. J Comput Appl Math 295:139–148. https://doi.org/10.1016/j.cam.2015.01.018

    Article  MathSciNet  MATH  Google Scholar 

  50. Parry JP, Shephard JD, Hand DP, Moorhouse C, Jones N, Weston N (2011) Laser micromachining of zirconia (Y-TZP) ceramics in the picosecond regime and the impact on material strength. Int J Appl Ceram Technol 8:163–171. https://doi.org/10.1111/j.1744-7402.2009.02420.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Guarino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guarino, S., Ponticelli, G.S., Giannini, O. et al. Laser milling of yttria-stabilized zirconia by using a Q-switched Yb:YAG fiber laser: experimental analysis. Int J Adv Manuf Technol 94, 1373–1385 (2018). https://doi.org/10.1007/s00170-017-1020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1020-8

Keywords

Navigation