Skip to main content
Log in

Adaptive EWMA control charts with time-varying smoothing parameter

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Time-weighted charts like EWMA or CUSUM are designed to be optimal to detect a specific shift. This feature, however, can make the chart suboptimal for some other shifts.If, for instance, the charts are designed to detect a small shift, then, they can be inefficient to detect moderate or large shifts. In the literature, several alternatives have been proposed to circumvent this limitation, like the use of control charts with variable parameters or adaptive control charts. This paper aims to propose new adaptive EWMA control charts (AEWMA) based on the assessment of a potential misadjustment, which is translated into a time-varying smoothing parameter. The resulting control charts can be seen as a smooth combination between Shewhart and EWMA control charts, which could be efficient for a wide range of shifts. Markov chain procedures are established to analyse and design the proposed charts. Comparisons with other adaptive and traditional control charts show the advantages of our proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly AA, Saleh NA, Mahmoud MA, Woodall WH (2015) A reevaluation of the adaptive exponentially weighted moving average control chart when parameters are estimated. Qual Reliab Eng Int 31:1611–1622

    Article  Google Scholar 

  2. Amiri A, Nedaie A, Alikhani M (2013) A new adaptive variable sample size approach in EWMA control chart. Commun Stat-Simul Comput 43:804–812

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold JC, Reynolds MR (2001) CUSUM control charts with variable sample sizes and sampling intervals. J Qual Technol 33:66–81

    Google Scholar 

  4. Baxley RV (1995) An application of variable sampling interval control chart. J Qual Technol 27:275–282

    Google Scholar 

  5. Capizzi G, Masarotto G (2003) An adaptive exponentially weighted moving average control chart. Technometrics 45:199–207

    Article  MathSciNet  Google Scholar 

  6. Castagliola P, Zhang Y, Costa A, Maravelakis P (2012) The variable sample size X̄ chart with estimated parameters. Qual Reliab Eng Int 28:687–699

    Article  Google Scholar 

  7. Castagliola P, Achouri A, Taleb H, Celano G, Psarakis S (2015) Monitoring the coefficient of variation using a variable sample size control chart. Int J Adv Manuf Technol 81:1561–1576

    Article  Google Scholar 

  8. Costa AF (1994) X̄ charts with variable sample size. J Qual Technol 26:155–163

    Google Scholar 

  9. Costa AFB (1999) Joint X̄ and R charts with variable sample sizes and sampling intervals. J Qual Technol 31:387–397

    Google Scholar 

  10. Costa AFB (1999) X̄ charts with variable parameters. J Qual Technol 31:408–416

    Google Scholar 

  11. Crowder SV (1987) Average run lengths of exponentially weighted moving average control charts. J Qual Technol 19:161–164

    Google Scholar 

  12. Crowder SV (1989) Design of exponentially weighted moving average schemes. J Qual Technol 21:155–162

    Google Scholar 

  13. Cui RQ, Reynolds MR (1988) Chart with runs and variable sampling intervals. Commun Stat-Simul Comput 17:1073–1093

    Article  MATH  Google Scholar 

  14. Hunter JS (1986) The exponentially weighted moving average. J Qual Technol 18:203–210

    Google Scholar 

  15. Jiang W, Shu L, Apley DW (2008) Adaptive CUSUM procedures with EWMA-based shift estimators. IIE Trans 40:992– 1003

    Article  Google Scholar 

  16. Keats JB, Miskulin JD, Runger GC (1995) Statistical process control scheme design. J Qual Technol 27:214–225

    Google Scholar 

  17. Kim J, Al-Khalifa KN, Park M, Jeong MK, Hamouda AMS, Elsayed EA (2013) Adaptive cumulative sum charts with the adaptive runs rule. Int J Prod Res 51:4556–4569

    Article  Google Scholar 

  18. Lucas JM, Saccucci MS (1990) Exponentially weighted moving average control schemes: properties and enhancements (with discussion). Technometrics 32:1–29

    Article  MathSciNet  Google Scholar 

  19. Mahadik SB (2013) X̄ Charts with variable sample size, sampling interval, and warning limits. Qual Reliab Eng Int 29:535– 544

    Article  Google Scholar 

  20. Montgomery DC, Gardiner JS, Pizzano BA (1987) Statistical process control methods for detecting small process shifts. In: Lenz H-J, Wetherill G B, Wilrich P T (eds) Frontiers in statistical quality control. Physica-Verlag, Heidelberg, pp 161–178

    Google Scholar 

  21. Page ES (1954) Continuous inspection schemes. Biometrika 41:100–114

    Article  MathSciNet  MATH  Google Scholar 

  22. Page ES (1955) Control charts with warning lines. Biometrika 42:243–257

    Article  MATH  Google Scholar 

  23. Page ES (1955) A test for a change in a parameter occurring at an unknown point. Biometrika 42:523–527

    Article  MathSciNet  MATH  Google Scholar 

  24. Prabhu SS, Runger GC, Keats JB (1993) X̄ chart with adaptive sample sizes. Int J Prod Res 31:2895–2909

    Article  Google Scholar 

  25. Prabhu SS, Montgomery DC, Runger GC (1994) A combined adaptive sample size and sampling interval X̄ control scheme. J Qual Technol 26:164–176

    Google Scholar 

  26. Psarakis S (2015) Adaptive control charts: recent developments and extensions. Qual Reliab Eng Int 31:1265–1280

    Article  MathSciNet  Google Scholar 

  27. Reynolds MR (1995) Evaluating properties of variable sampling interval control charts. Sequen Anal 14:59–97

    Article  MathSciNet  MATH  Google Scholar 

  28. Reynolds MR (1996) Shewhart and EWMA variable sampling interval control charts with sampling at fixed times. J Qual Technol 28:199–212

    Google Scholar 

  29. Reynolds MR (1996) Variable-sampling-interval control charts with sampling at fixed times. IIE Trans 28:497–510

    Article  Google Scholar 

  30. Reynolds MR, Arnold JC (2001) EWMA control charts with variable sample sizes and variable sampling intervals. IIE Trans 33:511–530

    Google Scholar 

  31. Reynolds MR, Stoumbos ZG (1998) The SPRT chart for monitoring a proportion. IIE Trans 30:545–561

    Google Scholar 

  32. Reynolds MR, Amin RW, Arnold JC, Nachlas JA (1988) X̄ Charts with variable sampling intervals. Technometrics 30:181–192

    MathSciNet  Google Scholar 

  33. Reynolds MR, Amin RW, Arnold JC (1990) CUSUM charts with variable sampling intervals. Technometrics 32:371–384

    Article  MathSciNet  MATH  Google Scholar 

  34. Roberts SW (1959) Control chart tests based on geometric moving averages. Technometrics 1:239–250

    Article  Google Scholar 

  35. Robinson PB, Ho TY (1978) Average run lengths of geometric moving averages by numerical methods. Technometrics 20:85–93

    Article  MATH  Google Scholar 

  36. Runger GC, Pignatiello JJ (1991) Adaptive sampling for process control. J Qual Technol 23:135–155

    Google Scholar 

  37. Saleh NA, Mahmoud MA, Abdel-Salam ASG (2012) The performance of the adaptive exponentially weighted moving average control chart with estimated parameters. Qual Reliab Eng Int 29:595–606

    Article  Google Scholar 

  38. Sawalapurkar-Powers U, Arnold JC, Reynolds MR (1990) Variable sample size control charts. In: the Annual Meeting of the American statistical association. Orlando

  39. Shewhart WA (1931) Economic control of quality of manufactured product. D. Van Nostrand Company, Inc. The United States of America, p 182

  40. Sparks R (2000) CUSUM charts for signaling varying location shifts. J Qual Technol 32:157–171

    Google Scholar 

  41. Stoumbos ZG, Reynolds MR (1996) Control charts applying a general sequential test at each sampling point. Seq Anal 15:159–183

    Article  MathSciNet  MATH  Google Scholar 

  42. Stoumbos ZG, Reynolds MR (1997) Corrected diffusion theory approximations in evaluating properties of SPRT charts for monitoring a process mean. In: Proceedings of the 2nd World Congress of nonlinear analysts, vol 30, pp 3987–3996

  43. Tagaras G (1998) A survey of recent developments in the design of adaptive control charts. J Qual Technol 30:212–231

    Google Scholar 

  44. Waldmann KH (1986) Bounds for the distribution of the run length of geometric moving average charts. J R Stat Soc Series C (Appl Stat) 35:151–158

    MathSciNet  MATH  Google Scholar 

  45. Woodall WH, Adams BM (1993) The statistical design of CUSUM charts. Qual Eng 5:559–570

    Article  Google Scholar 

  46. Yashchin E (1987) Some aspects of the theory of statistical control schemes. IBM J Res Develop 31:199–205

    Article  Google Scholar 

  47. Wu S (2011) Optimal inspection policy for three-state systems monitored by variable sample size control charts. Int J Adv Manuf Technol 55:689–697

    Article  Google Scholar 

  48. Wu Z, Jiao J, Yang M, Liu Y, Wang Z (2009) An enhanced adaptive CUSUM control chart. IIE Trans 41(7):642–653

    Article  Google Scholar 

  49. Zhang J, Li Z, Wang Z (2012) A new adaptive control chart for monitoring process mean and variability. Int J Adv Manuf Technol 60:1031–1038

    Article  Google Scholar 

  50. Zimmer LS, Montgomery DC, Runger GC (1998) Evaluation of a three-state adaptive sample size X̄ control chart. Int J Prod Res 36:733–743

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support received from the Spanish MEC, under grant ECO2012-38442 and ECO2015-66593, and the Peruvian Programa Nacional de Innovación para la Competitividad y Productividad (Innóvate Perú) under the contract 377-PNICP-PIAP-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Ugaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugaz, W., Sánchez, I. & Alonso, A.M. Adaptive EWMA control charts with time-varying smoothing parameter. Int J Adv Manuf Technol 93, 3847–3858 (2017). https://doi.org/10.1007/s00170-017-0792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0792-1

Keywords

Navigation