Skip to main content
Log in

Investigation of sensitivity analysis and compensation parameter optimization of geometric error for five-axis machine tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To improve the accuracy of five-axis machine tool with a swiveling head, an approach for optimizing compensation values taking into account the sensitivity of position-independent geometric error is proposed in this paper. At first, the synthetic volumetric error model of five-axis machine tool has been established with homogeneous transformation method and multibody system theory, which describes the effect of geometric error components on position and orientation error vector intuitively. Second, the probability distributions of geometric errors in workspace of machine tool are sufficiently taken into account in order to overcome the defects of the analysis at certain locations, and then, global quantitative sensitivity analysis is introduced for determining the effect of each geometric error on precision of machine tool. Next, the optimum values are obtained by multiobjective quality loss and precision robustness trade-offs based on archive-based microgenetic algorithm (AMGA) for geometric error compensation. Finally, the geometric error compensation experiments were carried out, and the results show that the accuracy of measuring trajectories are improved significantly, which reaches 73.7% after error compensation with optimum values based on sensitivity analysis. Hence, the proposed methodology of analysis and compensation are effective for analyzing the effect of geometric errors and improving the precision of machine tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ni J (1997) CNC machine accuracy enhancement through real-time error compensation. ASME J Manuf Sci Eng 119:717–725

    Article  Google Scholar 

  2. Li T, Li F, Jiang Y, Wang H (2017) Thermal error modeling and compensation of a heavy gantry-type machine tool and its verification in machining. Int J Adv Manuf Technol. doi:10.1007/s00170-017-0353-7

  3. Lee HH, Son JG, Yang SH (2017) Techniques for measuring and compensating for servo mismatch in machine tools using a laser tracker. Int J Adv Manuf Technol. doi:10.1007/s00170-017-0382-2

  4. Wang JD, Guo JJ (2013) Algorithm for detecting volumetric geometric accuracy of NC machine tool by laser tracker. Chin J Mec Eng 26(1):166–175

    Article  Google Scholar 

  5. Shen HY, Fu JZ, He ZY, Yao XY (2012) On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools. Int J Mach Tools Manuf 60:14–26

    Article  Google Scholar 

  6. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann-Manuf Technol 57(2):660–675

    Article  Google Scholar 

  7. ISO 230–7 (2015) Test code for machine tool-part 7: geometric accuracy of axes of rotation, ISO

  8. Lee KI, Yang SH (2013) Robust measurement method and uncertainty analysis for position-independent geometric errors of a rotary axis using a double ball-bar. Int J Precis Eng Manuf 14(2):231–239

    Article  Google Scholar 

  9. Zargarbashi SHH, Mayer JRR (2009) Single setup estimation of a five-axis machine tool eight link errors by programmed end point constraint and on the fly measurement with Capball sensor. Int J Mach Tools Manuf 49(10):759–766

    Article  Google Scholar 

  10. Tsutsumi M, Saito A (2003) Identification and compensation of systematic deviations particular to 5-axis machining centers. Int J Mach Tools Manuf 43(8):771–780

    Article  Google Scholar 

  11. Lasemi A, Xue DY, Gu PH (2016) Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar. Meas Sci Technol 27(5):055004

    Article  Google Scholar 

  12. Andolfatto L, Lavernhe S, Mayer JRR (2011) Evaluation of servo, geometric and dynamic error sources on five axis high-speed machine tool. Int J Mach Tools Manuf 51(10):787–796

    Article  Google Scholar 

  13. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256

    Article  Google Scholar 

  14. Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng 33(2):194–201

    Article  Google Scholar 

  15. Schultschik R (1977) The components of the volumetric accuracy. CIRP Ann 25(1):223–228

    Google Scholar 

  16. Lin Y, Shen Y (2003) Modelling of five-axis machine tool metrology models using the matrix summation approach. Int J Adv Manuf Technol 21(4):243–248

    Article  Google Scholar 

  17. Lee KI, Lee DM, Yang S-H (2012) Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar. Int J Adv Manuf Technol 62(5–8):741–750

    Article  Google Scholar 

  18. Mir YA, Mayer JRR, Fortin C (2002) Tool path error prediction of a five-axis machine tool with geometric errors. Proc Inst Mech Eng B J Eng Manuf 216(5):697–712

    Article  Google Scholar 

  19. Fu GQ, Fu JZ, Xu YT, Chen ZC, Lai JT (2015) Accuracy enhancement of five-axis machine tool based on differential motion matrix: geometric error modeling, identification and compensation. Int J Mach Tools Manuf 89:170–181

    Article  Google Scholar 

  20. Xiang ST, Altintas Y (2015) Modeling and compensation of volumetric errors for five-axis machine tools. Int J Mach Tools Manuf 101:65–78

    Article  Google Scholar 

  21. Moon SK, Moon YM, Kota S, Landers RG (2001) Screw theory based metrology for design and error compensation of machine tools. In Proceedings of the ASME 2001 Design Engineering Technical Conferences (DETC 2001), Pittsburgh, Pennsylvania, September 2001

  22. Fu GQ, Fu JZ, Shen HY, Xu YT, Jin YA (2015) Product-of-exponential formulas for precision enhancement of five-axis machine tools via geometric error modeling and compensation. Int J Adv Manuf Technol 81(1):289–305

    Article  Google Scholar 

  23. Cheng Q, Wu C, Gu PH, Chang WF, Xuan DS (2013) An analysis methodology for stochastic characteristic of volumetric error in multiaxis CNC machine tool. Math Probl Eng 2013:863283

    Google Scholar 

  24. Cheng Q, Sun BW, Liu ZF, Li JY, Dong XM, Gu PH (2017) Key geometric error extraction of machine tool based on extended Fourier amplitude sensitivity test method. Int J Adv Manuf Technol 90(9):3369–3385

    Article  Google Scholar 

  25. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. John Wiley and Sons, New York

    MATH  Google Scholar 

  26. Kato N, Sato R, Tsutsumi M (2013) Analysis of circular trajectory equivalent to cone-frustum milling in five-axis machining centers using motion simulator. Int J Mach Tools Manuf 64(4):1–11

    Article  Google Scholar 

  27. Lei WT, Wang WC, Fang TC (2014) Ballbar dynamic tests for rotary axes of five-axis CNC machine tools. Int J Mach Tools Manuf 82:29–41

    Article  Google Scholar 

  28. Zargarbashi SHH, Mayer JRR (2006) Assessment of machine tool trunnion axis motion error, using magnetic double ball bar. Int J Mach Tools Manuf 46(14):1823–1834

    Article  Google Scholar 

  29. Lee RS, Lin YH (2012) Applying bidirectional kinematics to assembly error analysis for five-axis machine tools with general orthogonal configuration. Int J Adv Manuf Technol 62(9–12):1261–1272

    Article  Google Scholar 

  30. Yao HH, Li ZQ, Zhao XS, Sun T, Dobrovolskyi G, Li G (2016) Modeling of kinematics errors and alignment method of a swing arm ultra-precision diamond turning machine. Int J Adv Manuf Technol 87(1):165–176

    Article  Google Scholar 

  31. Cheng Q, Zhao HW, Zhang GJ, Gu PH, Cai LG (2014) An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis. Int J Adv Manuf Technol 75(1):107–121

    Article  Google Scholar 

  32. Chen GD, Liang YC, Sun YZ, Chen WQ, Wang B (2013) Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool. Int J Adv Manuf Technol 68(9):2525–2534

    Article  Google Scholar 

  33. Zhang XF, Zhang YM, Pandey MD (2015) Global sensitivity analysis of a CNC machine tool: application of MDRM. Int J Adv Manuf Technol 81(1):159–169

    Article  Google Scholar 

  34. Peng FY, Ma JY, Wang W, Duan XY, Sun PP, Yan R (2013) Total differential methods based universal post processing algorithm considering geometric error for multi-axis NC machine tool. Int J Mach Tools Manuf 70:53–62

    Article  Google Scholar 

  35. Nojedeh MV, Habibi M, Arezoo B (2011) Tool path accuracy enhancement through geometrical error compensation. Int J Mach Tools Manuf 51(6):471–482

    Article  Google Scholar 

  36. Lei WT, Sung MP (2008) NURBS-based fast geometric error compensation for CNC machine tools. Int J Mach Tools Manuf 48(3):307–319

    Article  Google Scholar 

  37. Tsutsumi M, Tone S, Kato N, Sato R (2013) Enhancement of geometric accuracy of five-axis machining centers based on identification and compensation of geometric deviations. Int J Mach Tools Manuf 68:11–20

    Article  Google Scholar 

  38. Bi QZ, Huang ND, Sun C, Wang YH, Zhu LM, Ding H (2015) Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement. Int J Mach Tools Manuf 89:182–191

    Article  Google Scholar 

  39. Givi M, Mayer JRR (2016) Optimized volumetric error compensation for five-axis machine tools considering relevance and compensability. CIRP J Manuf Sci Technol 12:44–55

    Article  Google Scholar 

  40. Fu GQ, Fu JZ, Shen HY, Yao XH, Chen ZC (2015) NC codes optimization for geometric error compensation of five-axis machine tools with one novel mathematical model. Int J Adv Manuf Technol 80(9):1879–1894

    Article  Google Scholar 

  41. Chen JX, Lin SW (2017) An error compensation scheme for multi-axis machine tool using machining method template. Int J Adv Manuf Technol 90(9):3013–3023

    Article  Google Scholar 

  42. Ding S, Huang XD, Yu CJ, Liu XY (2016) Novel method for position-independent geometric error compensation of five-axis orthogonal machine tool based on error motion. Int J Adv Manuf Technol 83(5–8):1069–1078

    Article  Google Scholar 

  43. Ibaraki S, Iritani T, Matsushita T (2012) Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe. Int J Mach Tools Manuf 58:44–53

    Article  Google Scholar 

  44. ISO 230-1 (2012) Test code for machine tools-part 1: geometric accuracy of machines operating under no-load or quastic-static conditions. ISO

  45. Houston R, Liu YW (1991) Multi-body system dynamics. Tianjin University Press, Tianjin

    Google Scholar 

  46. ISO 10791-6 (2014) Test conditions for machining centres. Part 6 Accuracy of speeds and interpolation. ISO

  47. Pianosi F, Sarrazin F, Wagener T (2015) A matlab toolbox for global sensitivity analysis. Environ Model Softw 70:80–85

    Article  Google Scholar 

  48. Saltelli A, Tarantola S, Chan KS (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1):39–56

    Article  Google Scholar 

  49. Kalpakjian S (2009) Manufacturing engineering and technology. Prentice Hall, New Jersey

    Google Scholar 

  50. Jiang ZX, Tang XQ, Zhou XD, Zheng SQ (2015) Machining tests for identification of location errors on five-axis machine tools with a tilting head. Int J Adv Manuf Technol 79(1–4):245–254

    Article  Google Scholar 

  51. Ibaraki S, Sawada M, Matsubara A, Matsushita T (2010) Machining tests to identify kinematic errors on five-axis machine tools. Precis Eng 34(3):387–398

    Article  Google Scholar 

  52. Chen LZ (2000) Robust design. China Machine Press, Bei Jing

    Google Scholar 

  53. Taguchi G (1986) Introduction to quality engineering. Asian Productivity Organization, Tokyo

    Google Scholar 

  54. Tian MS, Gong XY, Yin L, Li HZ, Ming WY, Zhang Z, Chen JH (2016) Multi-objective optimization of injection molding process parameters in two stages for multiple quality characteristics and energy efficiency using Taguchi method and NSGA-II. Int J Adv Manuf Technol 89(1):241–254

    Google Scholar 

  55. Tiwari S, Koch P, Fadel G, Deb K (2008) AMGA: an archive-based micro genetic algorithm for multi-objective optimization. In Proceedings of the 10th annual conference on genetic and evolutionary computation, (GECCO 2008), Atlanta, July 2008

  56. China S. A 10791-2 (2007) The 5-axes simultaneous vertical machining centers-part 1: testing of the accuracy, in Chinese

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gedong Jiang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Jiang, G. & Mei, X. Investigation of sensitivity analysis and compensation parameter optimization of geometric error for five-axis machine tool. Int J Adv Manuf Technol 93, 3229–3243 (2017). https://doi.org/10.1007/s00170-017-0755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0755-6

Keywords

Navigation