Skip to main content
Log in

Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Due to the significant difference between the reinforcement grains and matrix phase, the machining of SiC particle-reinforced aluminum composites (SiCp/Al) is difficult and costly, especially for SiCp/Al with volume fraction higher than 50%. Ultrasonically assisted grinding (UAG), which has unique advantages in the machining of both ductile and brittle materials, is a promising solution of the machining of SiCp/Al. This study conducts both UAG and conventional grinding (CG) process on SiCp/Al with an electroplated diamond wheel. The study explores material removal mechanisms involved in UAG in comparison to that in the CG. It also investigates grinding forces, surface integrity, subsurface damage, and wheel wear. The study finds that material removal in grinding of SiCp/Al is dominated by SiC particle fracture that is induced in the grinding process. The ground workpiece is smeared with an aluminum layer, making it difficult to evaluate surface integrity. Compared with CG, UAG of SiCp/Al results in similar surface integrity in terms of surface roughness and subsurface damage, but a much lower grinding force (35–50% lower).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang T, Xie LJ, Wang XB, Jiao L, Shen JW, Xu H, Nie FM (2013) Surface integrity of high speed milling of Al/SiC/65p aluminum matrix composites. Procedia CIRP, In, pp 475–480

    Google Scholar 

  2. Kumar R, Chauhan S (2015) Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Meas J Int Meas Confed 65:166–180. doi:10.1016/j.measurement.2015.01.003

    Article  Google Scholar 

  3. Anand Ronald B, Vijayaraghavan L, Krishnamurthy R (2009) Studies on the influence of grinding wheel bond material on the grindability of metal matrix composites. Mater Des 30:679–686. doi:10.1016/j.matdes.2008.05.038

    Article  Google Scholar 

  4. Quan YM, Zhou ZH, Ye BY (1999) Cutting process and chip appearance of aluminum matrix composites reinforced by SiC particle. J Mater Process Technol 91:231–235. doi:10.1016/S0924-0136(98)00444-0

    Article  Google Scholar 

  5. Bian R, He N, Li L, Zhan ZB, Wu Q, Shi ZY (2014) Precision milling of high volume fraction SiCp/Al composites with monocrystalline diamond end mill. Int J Adv Manuf Technol 71:411–419. doi:10.1007/s00170-013-5494-8

    Article  Google Scholar 

  6. Di Ilio A, Paoletti A, Tagliaferri V, Veniali F, Ilio ADI, Venialiii F (1996) An experimental study on grinding of silicon carbide reinforced aluminium alloys. Int J Mach Tools Manuf 36:673–685. doi:10.1016/0890-6955(95)00068-2

    Article  Google Scholar 

  7. Jayakumar K, Mathew J, Joseph M a. (2013) An investigation of cutting force and tool-work interface temperature in milling of Al-SiCp metal matrix composite. Proc Inst Mech Eng Part B J Eng Manuf 227:362–374. doi:10.1177/0954405412472887

    Article  Google Scholar 

  8. Thiagarajan C, Sivaramakrishnan R, Somasundaram S (2011) Experimental evaluation of grinding forces and surface finish in cylindrical grinding of Al/SiC metal matrix composites. Proc Inst Mech Eng Part B J Eng Manuf 225:1606–1614. doi:10.1177/0954405411398761

    Article  Google Scholar 

  9. Di Ilio A, Paoletti A (2000) Comparison between conventional abrasives and superabrasives in grinding of SiC-aluminium composites. Int J Mach Tools Manuf 40:173–184. doi:10.1016/S0890-6955(99)00061-9

    Article  Google Scholar 

  10. Yanming Q, Zehua Z (2000) Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites. J Mater Process Technol 100:194–199. doi:10.1016/S0924-0136(99)00405-7

    Article  Google Scholar 

  11. Zhou L, Huang S, Xu L, Bai D, Zhao P (2013) Drilling characteristics of SiCp/Al composites with electroplated diamond drills. Int J Adv Manuf Technol 69:1165–1173. doi:10.1007/s00170-013-5096-5

    Article  Google Scholar 

  12. Karthikeyan R, Raghukandan K, Naagarazan RS, Pai BC (2000) Optimizing the milling characteristics of AI-SiC particulate composites. Met Mater 6:539–547

    Article  Google Scholar 

  13. Ciftci I, Turker M, Seker U (2004) Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites. Mater Des 25:251–255. doi:10.1016/j.matdes.2003.09.019

    Article  Google Scholar 

  14. Gao GF, Zhao B, Xiang DH, Kong QH (2009) Research on the surface characteristics in ultrasonic grinding nano-zirconia ceramics. J Mater Process Technol 209:32–37. doi:10.1016/j.jmatprotec.2008.01.061

    Article  Google Scholar 

  15. Yuan S, Zhang C, Hu J (2014) Effects of cutting parameters on ductile material removal mode percentage in rotary ultrasonic face machining. Proc Inst Mech Eng Part B J Eng Manuf 229:1547–1556. doi:10.1177/0954405414548497

    Article  Google Scholar 

  16. Zahedi A, Tawakoli T, Akbari J (2015) Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics. Int J Mach Tools Manuf 90:16–28. doi:10.1016/j.ijmachtools.2014.12.002

    Article  Google Scholar 

  17. Zheng W, Zhou M, Zhou L (2017) Influence of process parameters on surface topography in ultrasonic vibration-assisted end grinding of SiCp/Al composites. Int J Adv Manuf Technol. doi:10.1007/s00170-016-9931-3

  18. Dong GJ, Zhang H j, Zhou M, Zhang YJ (2013) Experimental investigation on ultrasonic vibration-assisted turning of SiCp/Al composites. Adv Mater Res 690–693:2026–2029. doi:10.1080/10426914.2012.709338

    Article  Google Scholar 

  19. Guo B, Zhao Q-L, Jackson MJ (2012) Ultrasonic vibration-assisted grinding of micro-structured surfaces on silicon carbide ceramic materials. Proc Inst Mech Eng Part B J Eng Manuf 226:553–559. doi:10.1177/0954405411423574

    Article  Google Scholar 

  20. Bhaduri D, Soo SL, Aspinwall DK, Novovic D, Harden P, Bohr S, Martin D (2012) A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Procedia CIRP, In, pp 359–364

    Google Scholar 

  21. Wang M, Zhou M (2013) Study on processing optimization in ultrasonic-assisted grinding of SiCp/Al thin-walled workpiece. Appl Mech Mater 313–314:673–676. doi:10.4028/www.scientific.net/AMM.313-314.673

    Google Scholar 

  22. Zhou M, Zheng W (2016) A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites. Int J Adv Manuf Technol 87:3211–3224. doi:10.1007/s00170-016-8726-x

    Article  Google Scholar 

  23. Wang T, Xie L, Wang X (2015) Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite. Int J Adv Manuf Technol 1185–1194. doi: 10.1007/s00170-015-6876-x

  24. Tawakoli T, Azarhoushang B (2008) Influence of ultrasonic vibrations on dry grinding of soft steel. Int J Mach Tools Manuf 48:1585–1591. doi:10.1016/j.ijmachtools.2008.05.010

    Article  Google Scholar 

  25. Huang S, Yu X, Wang F, Xu L (2015) A study on chip shape and chip-forming mechanism in grinding of high volume fraction SiC particle reinforced Al-matrix composites. Int J Adv Manuf Technol 80:1927–1932. doi:10.1007/s00170-015-7138-7

    Article  Google Scholar 

  26. Huang H, Liu YC (2003) Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding. Int J Mach Tools Manuf 43:811–823. doi:10.1016/S0890-6955(03)00050-6

    Article  Google Scholar 

  27. Ding K, Fu Y, Su H, Gong X, Wu K (2014) Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide. Int J Adv Manuf Technol 71:1929–1938. doi:10.1007/s00170-014-5625-x

    Article  Google Scholar 

  28. Bhaduri D, Soo SL, Novovic D, Aspinwall DK, Harden P, Waterhouse C, Bohr S, Mathieson AC, Lucas M (2013) Ultrasonic assisted creep feed grinding of Inconel 718. Procedia CIRP, In, pp 615–620

    Google Scholar 

  29. Wang Y, Lin B, Cao X, Wang S (2014) An experimental investigation of system matching in ultrasonic vibration assisted grinding for titanium. J Mater Process Technol 214:1871–1878. doi:10.1016/j.jmatprotec.2014.04.001

    Article  Google Scholar 

  30. Liang Z, Wang X, Wu Y, Xie L, Liu Z, Zhao W (2012) An investigation on wear mechanism of resin-bonded diamond wheel in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire. J Mater Process Technol 212:868–876. doi:10.1016/j.jmatprotec.2011.11.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renke Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Zheng, F., Zhu, X. et al. Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction. Int J Adv Manuf Technol 93, 2827–2839 (2017). https://doi.org/10.1007/s00170-017-0676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0676-4

Keywords

Navigation