Skip to main content
Log in

A low-cost infrared sensing system for monitoring the MIG welding process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, a low-cost infrared sensing system based on the analysis of the surface temperature distribution is proposed for monitoring the perturbations occurring during the aluminum alloy metal inert gas (MIG) welding process. A galvanometer scanner is employed in this real-time infrared sensing system to continually reflect the infrared energy to the point infrared sensor. By controlling the scanning mirror of the galvanometer scanner rotating in a high speed, the infrared energy at different points of the welding seam and the heat-affected zone on the surface of the plate will be continually captured by the point infrared sensor. Different conditions (changes in the welding speed, welding current, and joint gap width) of the welding process have been simulated to perturb the welding process. Three representative geometric defects such as undercut, humping, and lack of fusion were produced to validate our infrared sensing system. Experimental results showed that the sensing system is useful for monitoring perturbations that arise during the welding process and identifying welding defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Çam G, İpekoğlu G (2016) Recent developments in joining of aluminum alloys. Int J Adv Manuf Technol. doi:10.1007/s00170-016-9861-0

  2. Santos MC Jr, Machado AR, Sales WF, Barrozo MAS, Ezugwu EO (2016) Machining of aluminum alloys: a review. Int J Adv Manuf Technol. doi: 10.1007/s00170-016-8431-9

  3. Trimm M (2003) An overview of nondestructive evaluation methods. J Fail Anal Prev 3(3):17–31

    Google Scholar 

  4. Lakshmi MRV, Mondal AK, Jadhav CK, Dutta BVR, Sreedhar S (2013) Overview of NDT methods applied on an aero engine turbine rotor blade. Insight Non Destr Test Cond Monit 55(9):482–486. doi:10.1784/insi.2012.55.9.482

    Article  Google Scholar 

  5. Lhémery A, Calmon P, Lecœur-Taїbi I, Raillon R, Paradis L (2000) Modeling tools for ultrasonic inspection of welds. NDT E Int 33(7):499–513. doi:10.1016/S0963-8695(00)00021-9

    Article  Google Scholar 

  6. Ditchburn RJ, Burke SK, Scala CM (1996) NDT of welds: state of the art. NDT E Int 29(96):111–117. doi:10.1016/0963-8695(96)00010-2

    Article  Google Scholar 

  7. Easterling K (1992) Introduction to the physical metallurgy of welding. Butterworth Heinemann, Great Britain

  8. Kou S (2003) Welding metallurgy. Wiley, New Jersey

  9. Gao X, Liu Y, Lan C, Xiao Z, Chen X (2016) Laser-induced infrared characteristic analysis for evaluating joint deviation during austenitic stainless steel laser welding. Int J Adv Manuf Technol 88(5):1877–1888. doi: 10.1007/s00170-016-8892-x

  10. Alfaro SCA, Vargas JAR, Carvalho GCD, Souza GGD (2015) Characterization of “humping” in the GTA welding process using infrared images. J Mater Process Technol 223:216–224. doi:10.1016/j.jmatprotec.2015.03.052

    Article  Google Scholar 

  11. Vasudevan M, Chandrasekhar MN, Maduraimuthu MV, Bhaduri AK, Raj B (2013) Real-time monitoring of weld pool during GTAW using infrared thermography and analysis of infrared thermal images. Weld World 55(7–8):83–89

    Google Scholar 

  12. Doumanidis CC, Hardt DE (1991) Multivariable adaptive control of thermal properties during welding. J Dyn Syst Meas Control Trans ASME 113(1):82–92

    Article  Google Scholar 

  13. Chandrasekhar N, Vasudevan M, Bhaduri AK, Jayakumar T (2015) Intelligent modeling for estimating weld bead width and depth of penetration from infra-red thermal images of the weld pool. J Intell Manuf 26(1):1–13. doi:10.1007/s10845-013-0762-x

    Article  Google Scholar 

  14. Menaka M, Vasudevan M, Venkatraman B, Raj B (2005) Estimating bead width and depth of penetration during welding by infrared thermal imaging. Insight Non Destr Test Cond Monit 47(47):564–568. doi:10.1784/insi.2005.47.9.564

    Article  Google Scholar 

  15. Ghanty P, Vasudevan M, Mukherjee DP, Pal NR, Chandrasekhar N, Maduraimuthu V, Bhaduri AK, Barat P, Raj B (2008) Artificial neural network approach for estimating weld bead width and depth of penetration from infrared thermal image of weld pool. Sci Technol Weld Join 60(2):395–401. doi:10.1179/174329308X300118

    Article  Google Scholar 

  16. Fan H, Ravala NK, Iii HCW, Chin BA (2003) Low-cost infrared sensing system for monitoring the welding process in the presence of plate inclination angle. J Mater Process Technol 140(1–3):668–675. doi:10.1016/S0924-0136(03)00836-7

    Article  Google Scholar 

  17. Iii HCW, Kottilingam S, Zee RH, Chin BA (2001) Infrared sensing techniques for penetration depth control of the submerged arc welding process. J Mater Process Technol 113(1–3):228–233. doi:10.1016/S0924-0136(01)00587-8

    Google Scholar 

  18. Ling KH, Fuh YK, Kuo TC, Sheng XT (2015) Effect of welding sequence of a multi-pass temper bead in gas-shielded flux-cored arc welding process: hardness, microstructure, and impact toughness analysis. Int J Adv Manuf Technol 81(5):1–14. doi:10.1007/s00170-015-7277-x

    Google Scholar 

  19. Wu S, Gao H, Zhang Z (2015) A preliminary test of a novel molten metal filler welding process. Int J Adv Manuf Technol 80(1):647–655. doi:10.1007/s00170-015-7017-2

    Article  Google Scholar 

  20. Pal K, Bhattacharya S, Pal SK (2010) Multisensor-based monitoring of weld deposition and plate distortion for various torch angles in pulsed MIG welding. Int J Adv Manuf Technol 50(5):543–556. doi:10.1007/s00170-010-2523-8

    Article  Google Scholar 

  21. Al-Habaibeh A, Parkin R (2003) An autonomous low-cost infrared system for the on-line monitoring of manufacturing processes using novelty detection. Int J Adv Manuf Technol 22(3):249–258. doi:10.1007/s00170-002-1467-z

    Article  Google Scholar 

  22. Myhr OR, Kluken AO, Klokkehaug S, Fjaer HG, Grong O (1998) Modeling of microstructure evolution, residual stresses and distortions in 6082-t6 aluminum weldments. Weld J 77(7)

  23. Missori S, Pezzuti E (2010) Microstructural and mechanical characteristics of welded joints in type 6082-t6 aluminium alloy. Weld Int 11(11):468–474. doi:10.1080/09507119709451996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Xu, G., Gu, X. et al. A low-cost infrared sensing system for monitoring the MIG welding process. Int J Adv Manuf Technol 92, 4031–4038 (2017). https://doi.org/10.1007/s00170-017-0515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0515-7

Keywords

Navigation