Skip to main content
Log in

A preliminary study on the characterization of laser-bending process of AISI 304 steel sheets by acoustic emission technique

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser bending is an innovative technology that uses a laser beam to bend metal sheets and/or components. It offers advantages such as lack of equipment, high flexibility, adaptability to different materials (including metal foams), and possibility of automation. Actually, the angle can be measured only after the laser-bending process. The acoustic emission (AE) technique offers a great potential for the “on-time” evaluation of the bending angle: this technique is based on the detection of high-frequency acoustic signals emitted during the phenomena evolution deriving from the deformation and/or fracture of a component/structure. This paper presents an initial approach to understand the relationship between bending angle and the characteristics of the AE signals generated during the laser-material interaction. In this work, a diode laser is used to bend an AISI 304 stainless steel sheet: the laser parameters used and the bending angle obtained were correlated with each other. A useful dependence between laser bending and AE parameters was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Edwards (2004) A study into the 2D and 3D laser forming of metallic components. PhD Thesis, Laser Group, Department of Engineering, the University of Liverpool, UK

  2. Y. Namba (1985) Laser forming in space. In: Proceedings of the International Conference on Lasers. Las Vegas 403–407

  3. Y. Namba (1987) Laser forming of metals and alloys. In: Proceedings of the LAMP, Osaka 601–606

  4. Walczyk F, Vittal S (2000) Bending of titanium sheet using laser forming. J Manuf Process 2/4:258–269. doi:10.1016/S1526-6125(00)70027-2

    Article  Google Scholar 

  5. Shen H, Yao Z, Hu J (2009) Numerical analysis of metal/ceramic bilayer materials systems in laser forming. Comput Mater Sci 45:439–442. doi:10.1016/j.commatsci.2008.11.009

    Article  Google Scholar 

  6. Quadrini F, Guglielmotti A, Squeo EA, Tagliaferri V (2010) Laser forming of open-cell aluminum foams. J Mater Process Technol 210/11:1517–1522. doi:10.1016/j.jmatprotec.2010.04.010

    Article  Google Scholar 

  7. Vollertsen F (1994) An analytical model for laser bending. Lasers in Engineering 2:261–276

    Google Scholar 

  8. Wu D, Zhang Q, Ma G, Guo Y, Guo D (2010) Laser bending of brittle materials. Opt Lasers Eng 48/4:405–410. doi:10.1016/j.optlaseng.2009.09.009

    Article  Google Scholar 

  9. Geiger M, Vollertsen F (1993) The mechanism of laser forming. CIRP Ann 42:301–304. doi:10.1016/S0007-8506(07)62448-2

    Article  Google Scholar 

  10. C.L. Yau, K.C. Chan, W.B. Lee (1997) A new analytical model for laser bending. In: Laser Assisted Net Shape Engineering 2, Proceedings of the LANE 2:357–366

  11. Z. Mucha, J. Hoffman, W. Kalita, S. Mucha (1997) Laser forming of thick free plates. In: Laser Assisted Net Shape Engineering 2, Proceedings of the LANE 383–392

  12. Kyrsanidi AK, Kermanidis TB, Pantelakis SG (2000) Analytical model for the prediction of distortions caused by the laser forming process. J Mater Process Technol 104:94–102. doi:10.1016/S0924-0136(00)00520-3

    Article  Google Scholar 

  13. Cheng PJ, Lin SC (2001) Analytical model to estimate angle formed by laser. J Mater Process Technol 108:314–319. doi:10.1016/S0924-0136(00)00858-X

    Article  Google Scholar 

  14. Yu G, Anderson RJ, Maekawa T, Patrikalakis NM (2001) Efficient simulation of shell forming by line heating. Int J Mech Sci 43/10:2349–2370. doi:10.1016/S0020-7403(01)00037-6

    Article  MATH  Google Scholar 

  15. Vollertsen F, Komel I, Kals R (1995) The laser bending of steel foils for microparts by the buckling mechanism—a model. Model Simul Mater Sci Eng 3/1:107–119

    Article  Google Scholar 

  16. Shen H, Shi YJ, Yao ZQ, Hu J (2006) An analytical model for estimating deformation in laser forming. Comput Mater Sci 37:593–598. doi:10.1016/j.commatsci.2005.12.030

    Article  Google Scholar 

  17. Shi YJ, Liu YC, Yao ZQ, Shen H (2008) A study on bending direction of sheet metal in laser forming. J Appl Phys 103:Art. n053101. doi:10.1063/1.2887995

    Google Scholar 

  18. J. Kraus (1997) Basic processes in laser bending of extrusions using the upsetting mechanism. In: Laser Assisted Net Shape Engineering 2, Proceedings of the LANE 2: 431–438

  19. J. Magee (1999) Laser forming of aerospace alloys. Ph.D. Thesis, University of Liverpool

  20. S.P. Edwardson (2004) A study into the 2D and 3D laser forming of metallic components. Ph.D. Thesis, University of Liverpool

  21. Cheng PJ, Lin SC (2000) Using neural networks to predict bending angle of sheet metal formed by laser. Int J Mach Tools Manuf 40:1185–1197. doi:10.1016/S0890-6955(99)00111-X

    Article  Google Scholar 

  22. Casalino G, Ludovico AD (2002) Parameter selection by an artificial neural network for a laser bending process. Proc Inst Mech Eng Part B-J Eng 216/11:1517–1520. doi:10.1243/095440502320783350

    Article  Google Scholar 

  23. Kyrsanidi ANK, Kermanidis THB, Pantelakis SPG (2000) An analytical model for the prediction of distortions caused by the laser forming process. J Mater Process Technol 104:94–102. doi:10.1016/S0924-0136(00)00520-3

    Article  Google Scholar 

  24. Marya M, Edwards GR (2002) An analytical model for the optimisation of the laser bending of titanium Ti-6Al-2Sn-4Zr-2Mo. J Mater Process Technol 124:337–344. doi:10.1016/S0924-0136(02)00223-6

    Article  Google Scholar 

  25. Liu FR, Chan KC, Tang CY (2005) Theoretical analysis of deformation behaviour of aluminium matrix composites in laser forming. Mater Sci Eng A-Struct Mater 396:172–180. doi:10.1016/j.msea.2005.01.036

    Article  Google Scholar 

  26. Shichun W, Jinsong Z (2001) An experimental study of laser bending for sheet metals. J of Mat Proc Tech 110:160–163. doi:10.1016/S0924-0136(00)00860-8

    Article  Google Scholar 

  27. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann-Manuf Technol 56/1:273–276. doi:10.1016/j.cirp.2007.05.063

    Article  Google Scholar 

  28. Geiger M, Vollertsen F, Deinzer G (1993) Flexible straightening of car body shells by laser forming. International Congress and Exposition, Dearborn, pp 1–5 Paper 930279. doi:10.4271/930279

    Google Scholar 

  29. R. Kant, S.N. Joshi, U.S. Dixit (2015) Research issues in the laser sheet bending process. In: Materials Forming and Machining: Research and Development. Woodhead Publishing pp. 73–97, Cambridge, ISBN: 978-0857094834, doi:10.1016/B978-0-85709-483-4.00004-1.

  30. Gopal Chandra Jha, Nath AK, Roy SK (2008) Study of edge effect and multi-curvature in laser bending of AISI 304 stainless steel. J Mater Process Technol 197:434–438. doi:10.1016/j.jmatprotec.2007.06.040

    Article  Google Scholar 

  31. Hoseinpour Gollo M, Mahdavian SM, Moslemi Naeini H (2011) Statistical analysis of parameter effects on bending angle in laser forming process by pulsed Nd:YAG laser. Opt Laser Technol 43:475–482. doi:10.1016/j.optlastec.2010.07.004

    Article  Google Scholar 

  32. V. Paunoiu, E.A. Squeo, F. Quadrini, C. Gheorghies, D. Nicoara (2008) Laser bending of stainless steel sheet metals. Int J Mater Form (1):1371–1374, doi: 10.1007/s12289-008-0119-8.

  33. Shen H, Hu J, Yao Z (2010) Analysis and control of edge effects in laser bending. Opt Lasers Eng 48:305–315. doi:10.1016/j.optlaseng.2009.11.005

    Article  Google Scholar 

  34. M. Hoseinpour Gollo, H. Moslemi Naeini, G.H. Liaghat, M.J. Torkamany, S. Jelvani, V. Panahizade (2008) An experimental study of sheet metal bending by pulsed Nd:YAG laser with DOE method. Int J Mater Form (Supp. 1):137–140, doi: 10.1007/s12289-008-0 010-7.

  35. Lambiase F, Di Ilio A, Paoletti A (2016) Productivity in multi-pass laser forming of thin AISI 304 stainless steel sheets. Int J Adv Manuf Technol 86:259–268. doi:10.1007/s00170-015-8150-7

    Article  Google Scholar 

  36. Lambiase F, Di Ilio A, Paoletti A (2013) An experimental investigation on passive water cooling in laser forming process. Int J Adv Manuf Technol 64/5-8:829–840. doi:10.1007/s00170-012-4072-9

    Article  Google Scholar 

  37. Lambiase F, Di Ilio A (2013) A closed-form solution for thermal and deformation fields in laser bending process of different materials. Int J Adv Manuf Technol 69:849–861. doi:10.1007/s00170-013-5084-9

    Article  Google Scholar 

  38. Lambiase F, Di Ilio A, Paoletti A (2015) Optimization of multi-pass laser bending by means of soft computing techniques. Procedia CIRP 33:502–507. doi:10.1016/j.procir.2015.06.063

    Article  Google Scholar 

  39. AMSY5 user’s manual. Vallen System, http://www.vallen.de/downloads/, Last Access 30 03 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Papa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genna, S., Papa, I. & Leone, C. A preliminary study on the characterization of laser-bending process of AISI 304 steel sheets by acoustic emission technique. Int J Adv Manuf Technol 92, 4111–4119 (2017). https://doi.org/10.1007/s00170-017-0483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0483-y

Keywords

Navigation