Skip to main content
Log in

Molecular dynamics simulation of material removal process and crystal structure evolution in EDM with discharge on different crystal planes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The extensive application of electrical discharge machining (EDM) in the manufacturing industry and the advancement of EDM towards the micro-nano fields make the incompleteness and imperfection of fundamental theory in EDM a more acute problem and even become a huge bottleneck, hindering its further application and development. In this paper, single-pulse discharges on the {100}, {110}, and {111} planes were simulated to study the material removal process, crystal structure evolution, and influence of crystal plane. The research results show that during the discharge process, there generated high pressure inside the melting area, which makes the melting material expand outward and the swell was formed (forming process of swell). When the pressure inside the melting area overcame the bonding force among atoms, the swell broke open and the material started to depart from the electrode surface (blasting process of swell). In addition, it was found that after the end of discharge, there existed the stacking faults, dislocations, and vacancies or interstitial defects inside the electrode. The crystal defects mainly existing in the denatured layer had direct relation with the formation of cracks on the discharge surface. It was also found that the crystal plane had influence on the material removal process. Specifically, the volume of the discharge crater and bulge, the depth of crater, and the occurring moment of the material ablation on the {111} > {110} > {100} plane indicated that the machining on the {111} plane was the easiest while on the {100} plane was the hardest. However, the crystal plane had hardly any influence on the melting and solidifying process of material, and the occurring moment of material ablation was not equal to the melting moment of material, but later than the melting moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunieda M, Hayasaka A, Yang XD, Sano S, Araie I (2007) Study on nano EDM using capacity coupled pulse generator. Cirp Ann-Manuf Techn 56(1):213–216. doi:10.1016/j.cirp.2007.05.051

    Article  Google Scholar 

  2. Egashira K, Morita Y, Hattori Y (2010) Electrical discharge machining of submicron holes using ultrasmall-diameter electrodes. Precis Eng 34(1):139–144. doi:10.1016/j.precisioneng.2009.05.007

    Article  Google Scholar 

  3. Malshe AP, Rajurkar KP, Virwani KR, Taylor CR, Bourell DL, Levy G, Sundaram MM, McGeough JA, Kalyanasundaram V, Samant AN (2010) Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes. Cirp Ann-Manuf Techn 59(2):628–651. doi:10.1016/j.cirp.2010.05.006

    Article  Google Scholar 

  4. Jahan MP, Virwani KR, Rajurkar KP, Malshe AP (2013) A comparative study of the dry and wet nano-scale electro-machining. Proc Cirp 6:626–631. doi:10.1016/j.procir.2013.03.081

    Article  Google Scholar 

  5. Jahan MP, Rajurkar KP, Malshe AP (2016) A comparative study on machining capabilities of wet and dry nanoscale electro-machining. 18th Cirp Conference on Electro Physical and Chemical Machining 42:155–160. doi:10.1016/j.procir.2016.02.211

  6. Kunieda M (2010) Advancements in fundamental studies on EDM gap phenomena. Proceeding of the 16th International Symposium on Electromachining 23: 15-23

  7. Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2009) Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Tech 40(3–4):316–323. doi:10.1007/s00170-007-1327-y

    Article  Google Scholar 

  8. Liu JF, Guo YB (2016) Residual stress modeling in electric discharge machining (EDM) by incorporating massive random discharges. Procedia Cirp 45:299–302. doi:10.1016/j.procir.2016.02.060

    Article  Google Scholar 

  9. Escobar AM, de Lange DF, Castillo HIM (2016) Comparative analysis and evaluation of thermal models of electro discharge machining. Int J Adv Manuf Tech 89(1):743–754. doi:10.1007/s00170-016-9125-z

    Google Scholar 

  10. Somashekhar KP, Panda S, Mathew J, Ramachandran N (2015) Numerical simulation of micro-EDM model with multi-spark. Int J Adv Manuf Tech 76(1–4):83–90. doi:10.1007/s00170-013-5319-9

    Article  Google Scholar 

  11. Shabgard M, Seydi S, Seyedzavvar M (2016) Novel approach towards finite element analysis of residual stresses in electrical discharge machining process. Int J Adv Manuf Tech 82(9–12):1805–1814. doi:10.1007/s00170-015-7510-7

    Article  Google Scholar 

  12. Punturat J, Tangwarodomnukun V, DumkumDepartment C (2014) Surface characteristics and damage of monocrystalline silicon induced by wire-EDM. Appl Surf Sci 320:83–92. doi:10.1016/j.apsusc.2014.09.074

    Article  Google Scholar 

  13. Zhao YH, Kunieda M, Abe K (2014) Study of EDM cutting of single crystal silicon carbide. Precis Eng 38(1):92–99. doi:10.1016/j.precisioneng.2013.07.008

    Article  Google Scholar 

  14. Ding H, Liu ZD, Qiu MB, Chen HR, Tian ZJ, Shen LD (2016) Study of multi-cutting by WEDM for specific crystallographic planes of monocrystalline silicon. Int J Adv Manuf Tech 84(5–8):1201–1208. doi:10.1007/s00170-015-7784-9

    Google Scholar 

  15. Zhao YH, Kunieda M, Abe K (2016) Comparison on foil EDM characteristics of single crystal SiC between in deionized water and in EDM oil. Int J Adv Manuf Tech 86(9–12):2905–2912. doi:10.1007/s00170-016-8412-z

    Article  Google Scholar 

  16. Kawakami T, Kunieda M (2005) Study on factors determining limits of minimum machinable size in micro EDM. Cirp Ann-Manuf Techn 54(1):167–170. doi:10.1016/S0007-8506(07)60075-4

    Article  Google Scholar 

  17. Gao L, Liu Z, Qiu M, Tian Z, Wang W (2011) Damaged layer of monocrystalline silicon cut by wire electrical discharge machining. J Chin Ceram Soc 39(5):874–879

    Google Scholar 

  18. Huang CA, Hsu FY, Yao SJ (2004) Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM). Mat Sci Eng a-Struct 371(1–2):119–126. doi:10.1016/j.msea.2003.10.277

    Article  Google Scholar 

  19. Yang XD, Guo JW, Chen XF, Kunieda M (2011) Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precis Eng 35(1):51–57. doi:10.1016/j.precisioneng.2010.09.005

    Article  Google Scholar 

  20. Yang X, Han X, Zhou F, Kunieda M (2013) Molecular dynamics simulation of residual stress generated in EDM. Proceedings of the Seventeenth Cirp Conference on Electro Physical and Chemical Machining 6:432–437. doi:10.1016/j.procir.2013.03.037

    Google Scholar 

  21. Yang XD, Han X, Kunieda M (2014) Molecular dynamics simulation of pressure generated inside melting area in EDM. Key Eng Mater 625:525–529. doi:10.4028/www.scientific.net/KEM.625.525

    Article  Google Scholar 

  22. Yue XM, Yang XD (2015) Molecular dynamics simulation of the material removal process and gap phenomenon of nano EDM in deionized water. RSC Adv 5(82):66502–66510. doi:10.1039/c5ra11419e

    Article  Google Scholar 

  23. Takeuchi H, Kunieda M (2007) Effects of volume fraction of bubbles in discharge gap on machining phenomena of EDM. Proceedings of the 15th International Symposium on Electromachining: 63–68.

  24. Kojima A, Natsu W, Kunieda M (2008) Spectroscopic measurement of arc plasma diameter in EDM. Cirp Ann-Manuf Techn 57(1):203–207. doi:10.1016/j.cirp.2008.03.097

    Article  Google Scholar 

  25. Zhou M (2003) A new look at the atomic level virial stress: on continuum-molecular system equivalence. P Roy Soc a-Math Phy 459(2037):2347–2392. doi:10.1098/rspa.2003.1127

    Article  MATH  Google Scholar 

  26. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58(17):11085–11088. doi:10.1103/PhysRevB.58.11085

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Yang, X. Molecular dynamics simulation of material removal process and crystal structure evolution in EDM with discharge on different crystal planes. Int J Adv Manuf Technol 92, 3155–3165 (2017). https://doi.org/10.1007/s00170-017-0415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0415-x

Keywords

Navigation