Skip to main content
Log in

A method to improve the use of 6-dof robots as machine tools

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Since the introduction of robots in the automotive industry for pick and place tasks, new technologies have been developed in order to adapt robots to different manufacturing processes. Among them, the use of robots as machine tools is a technological trend that demands further investigation. Industrial robots with 6 DOF (degrees of freedom) in a serial kinematic chain have larger workspace and more flexibility, when compared with CNC machines. However, robots’ stiffness is lower than that of CNC machines. Consequently, vibration problems are expected, which can have a direct impact on the quality of the machined workpieces. This work proposes a method to evaluate and customize the use of a COTS (commercial off-the-shelf) robot equipped with a spindle for machining processes. It aims at improving the machining processes based on the measurement of the workpiece waviness and explores the fact that the accuracy and rigidity of industrial robots with serial kinematic chains behave in an anisotropic way, according to the robot pose and the cutting force direction. The method is composed of a set of five experiments and is applied to the evaluation of a robot machining aluminium workpieces. The results allow the identification of the relevant factors that affect the surface quality of the workpiece and recommend the best robot configuration for meeting the waviness requirements of the workpiece. Even though the application case describes the machining of aluminium workpiece, the proposed method is generic enough to be applied to different workpiece geometries and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Depree J, Gesswein C (2016) Robotic machining white paper project. Robotic Industries Association. http://www.robotics.org/robotic-content.cfm/Robotics/Halcyon-Development-RIA/id/43

  2. Cordes M, Hintze W (2016) Offline simulation of path deviation due to joint compliance and hysteresis for robot machining. Int J Adv Manuf Technol, pp 1–9, DOI: 10.1007/s00170-016-9461-z

  3. Belchior J, Guillo M, Courteille E, Maurine P, Lotoing L, Guines D (2013) Off-line compensation of the tool path deviations on robotic machining: application to incremental sheet forming. Robot Comput Integr Manuf 29:58–69. doi:10.1016/j.rcim.2012.10.008

    Article  Google Scholar 

  4. Klimchik A, Ambiehl A, Garnier S, Furet B, Pashkevich A (2016a). Experimental study of robotic-based machining. IFAC-Papers On Line, vol. 49, n.12, pp. 174–179. DOI: 10.1016/j.ifacol.2016.07.591

  5. Iglesias I, Sebastián MA, Ares JE (2015) Overview of the state of robotic machining: current situation and future potential. Procedia Engineering 132:911–917. doi:10.1016/j.proeng.2015.12.577

    Article  Google Scholar 

  6. Tunc LT, Shaw J (2016) Experimental study on investigation of dynamics of hexapod robot for mobile machining. Int J Adv Manuf Technol 84:817–830. doi:10.1007/s00170-015-7600-6

    Google Scholar 

  7. Barnfather JD, Goodfellow MJ, Abram T (2016a) Development and testing of an error compensation algorithm for photogrammetry assisted robotic machining. Measurement 94:561–577. doi:10.1016/j.measurement.2016.08.032

    Article  Google Scholar 

  8. Mejri S, Gagnol V, Le TP, Sabourin L, Ray P, Paultre P (2016) Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Technol 82:351–359. doi:10.1007/s00170-015-7336-3

    Article  Google Scholar 

  9. COMET (2012) Robots change the industrial future replacing the CNC machines. <http://www.cometproject.eu/publications/gizelis-robots-replace-cnc-machines.pdf

  10. STÄUBLI (2008) Stäubli: robotics and machining. http://www.staubli.com/index.php?eID=tx_nawsecuredl&u=0&file=fileadmin/user_upload/staublicom/robotics/robot_arms/products/pdf/RX170HSM_062008_GB_D18157504.pdf&t=1369831419&hash=b39c15ef09088e4d3256d8bc7e9859c941156174

  11. ABB (2016) IRB 6660 for pre-machining. http://new.abb.com/products/robotics/industrial-robots/irb-6660-for-pre-machining

  12. COMAU (2012) Comau robots: your robotized solution. http://www.comau.com/DlDownload/Comau%20Robotics%20Brochure/Brochure_gamma_Comau_Robotics.pdf

  13. KUKA AG (2012a) Milling 8 kW standard. 105

  14. KUKA AG (2012b) Kuka force torque control 3.0. 75

  15. Chen Y, Dong F (2013) Robot machining: recent development and future research issues. Int J Adv Manuf Technol 66:9–12. doi:10.1007/s00170-012-4433-4

    Google Scholar 

  16. Olofsson B, Sörnmo O, Schneider U (2011) Modeling and control of a piezo-actuated high-dynamic compensation mechanism for industrial robots. IEEE/RSJ International Conference on Intelligent Robots And Systems (IROS), pp. 4704–4709 DOI: 10.1109/IROS.2011.6094846

  17. Sörnmo O, Olofsson B, Robertsson A, Johansson R (2012) Increasing time-efficiency and accuracy of robotic machining processes using model-based adaptive force control. The 10th IFAC Symposium on Robot Control. DOI: 10.3182/20120905-3-HR-2030.00065

  18. Coelho RT, Rodella HHT, Martins VF, Barba R (2011) An investigation into the use of industrial robots for machining soft and low density materials with HSM technique. J Braz Soc Mech Sci Eng, vol. 33, n. 3, pp. 343–350 DOI: 10.1590/S1678-58782011000300010.

  19. Slamani M, Gauthier S, Chatelain JF (2015) A study of the combined effects of machining parameters on cutting force components during high speed robotic trimming of CFRPs. Measurement 59:268–283. doi:10.1016/j.measurement.2014.09.052

    Article  Google Scholar 

  20. Guo Y, Dong H, Ke Y (2015) Stiffness-oriented posture optimization in robotic machining applications. Robot Comput Integr Manuf 35:69–76. doi:10.1016/j.rcim.2015.02.006

    Article  Google Scholar 

  21. Barnfather JD, Goodfellow MJ, Abram T (2016b) A performance evaluation methodology for robotic machine tools used in large volume manufacturing. Robot Comput Integr Manuf 37:49–56. doi:10.1016/j.rcim.2015.06.002

    Article  Google Scholar 

  22. Dumas C et al (2011) Joint stiffness identification of six-revolute industrial serial robots. Robot Comput Integr Manuf 27:881–888. doi:10.1016/j.rcim.2011.02.003

    Article  Google Scholar 

  23. Abele E, Weigold M, Rothenbücher S (2015) Modeling and identification of an industrial robot for machining applications. Annals of the CIRP 56:387–390. doi:10.1016/j.cirp.2007.05.090

    Article  Google Scholar 

  24. Pan Z, Zang H, Zhu Z, Wang J (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173:301–306. doi:10.1016/j.jmatprotec.2005.11.033

    Article  Google Scholar 

  25. Zargarbashi SHH, Khan W, Angeles J (2012) Posture optimization in robot-assisted machining operations. Mech Mach Theory 51:74–86

    Article  Google Scholar 

  26. Klimchik A, Ambiehl A, Garnier S, Furet B, Pashkevich A (2016b) Experimental study of robotic-based machining. IFAC-PapersOnLine 49-12:174–179

    Article  Google Scholar 

  27. CORDIS (2010) COMET Project: plug-and-produce COmponents and METhods for adaptive control of industrial robots enabling cost effective, high precision manufacturing in factories of the future. http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=11467246

  28. CORDIS (2012) HEPHESTOS project: hard material small-batch industrial machining robot. http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=13114066

  29. Schneider U, Drust M, Puzik A, Verl A (2013) Compensation of errors in robot machining with a parallel 3D-piezo compensation mechanism. Procedia CIRP 7:305–310

    Article  Google Scholar 

  30. Katz R, Srivatsan V, Patil L (2011) Closed-loop machining cell for turbine blades. Int J Adv Manuf Technol 55:869–881. doi:10.1007/s00170-010-3138-9

    Article  Google Scholar 

  31. Bottero A, Gerio G, Perna V, Gagliano A (2014) Adaptive control techniques and feed forward compensation of periodic disturbances in industrial manipulators. Mechatronic and embedded systems and applications (MESA), IEEE/ASME 10th International Conference on. DOI: 10.1109/MESA.2014.6935612

  32. Slavkovic NR, Milutinovic DS, Glavonjic MM (2014) A method for off-line compensation of cutting force-induced errors in robotic machining by tool path modification. Int J Adv Manuf Technol 70:2083–2096. doi:10.1007/s00170-013-5421-z

    Article  Google Scholar 

  33. Grzesik W (2008) Advanced machining processes of metallic materials: theory, modelling and applications. Elsevier, Amsterdam 472 p. ISBN-13: 978-0080445342

    Google Scholar 

  34. Murthy ST (2010) Textbook of elements of mechanical engineering. New Delhi: 266 p. ISBN-13: 978–9380578576

  35. DIN EN ISO 4288:1998 (1998): Geometrical product specifications (GPS)—surface texture: profile method—rules and procedures for the assessment of surface texture

  36. Montgomery DC (2013) Design and analysis of experiments, 8ed edn. Wiley, Hoboken

    Google Scholar 

  37. Tschätsch H, Reichelt A (2010) Applied machining technology. Springer Science & Business Media, Wiesbaden 398 p. ISBN-13: 978-3642010064

    Google Scholar 

  38. Mann PS (2013) Introductory statistics. Wiley, New York 744 p. ISBN-13: 978-1-118-31870-6

    MATH  Google Scholar 

  39. The R Project for Statistical Computing. Available at: https://www.r-project.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Villani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtado, L.F.F., Villani, E., Trabasso, L.G. et al. A method to improve the use of 6-dof robots as machine tools. Int J Adv Manuf Technol 92, 2487–2502 (2017). https://doi.org/10.1007/s00170-017-0336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0336-8

Keywords

Navigation